Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA.
Department of Biochemistry, University of Wisconsin at Madison, Madison, WI, 53706, USA.
Nat Commun. 2021 Jan 8;12(1):172. doi: 10.1038/s41467-020-20468-7.
The dimeric transporter, EmrE, effluxes polyaromatic cationic drugs in a proton-coupled manner to confer multidrug resistance in bacteria. Although the protein is known to adopt an antiparallel asymmetric topology, its high-resolution drug-bound structure is so far unknown, limiting our understanding of the molecular basis of promiscuous transport. Here we report an experimental structure of drug-bound EmrE in phospholipid bilayers, determined using F and H solid-state NMR and a fluorinated substrate, tetra(4-fluorophenyl) phosphonium (F-TPP). The drug-binding site, constrained by 214 protein-substrate distances, is dominated by aromatic residues such as W63 and Y60, but is sufficiently spacious for the tetrahedral drug to reorient at physiological temperature. F-TPP lies closer to the proton-binding residue E14 in subunit A than in subunit B, explaining the asymmetric protonation of the protein. The structure gives insight into the molecular mechanism of multidrug recognition by EmrE and establishes the basis for future design of substrate inhibitors to combat antibiotic resistance.
二聚体转运蛋白 EmrE 以质子偶联的方式将多环阳离子药物排出细胞,从而赋予细菌多重耐药性。尽管已知该蛋白采用反平行不对称拓扑结构,但迄今为止其高分辨率药物结合结构仍不清楚,这限制了我们对混杂转运分子基础的理解。在这里,我们使用 F 和 H 固态 NMR 以及氟化底物四(4-氟苯基)膦(F-TPP)报道了药物结合态 EmrE 在磷脂双层中的实验结构。药物结合位点受 214 个蛋白-底物距离的限制,主要由芳香族残基(如 W63 和 Y60)主导,但空间足够大,可使四面体药物在生理温度下重新定向。F-TPP 在亚基 A 中比在亚基 B 中更靠近质子结合残基 E14,这解释了蛋白的不对称质子化。该结构深入了解了 EmrE 对多种药物的分子识别机制,并为未来设计底物抑制剂以对抗抗生素耐药性奠定了基础。