Suppr超能文献

汞(II)形态、巯基代谢和细胞生理学对 生成甲基汞的联合作用。

The Combined Effect of Hg(II) Speciation, Thiol Metabolism, and Cell Physiology on Methylmercury Formation by .

机构信息

Department of Chemistry, Umeå University, SE- 90187 Umeå, Sweden.

Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States.

出版信息

Environ Sci Technol. 2023 May 9;57(18):7185-7195. doi: 10.1021/acs.est.3c00226. Epub 2023 Apr 25.

Abstract

The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formation by . We compared MeHg formation with and without addition of exogenous cysteine (Cys) to experimental assays with varying nutrient and bacterial metabolite concentrations. Cysteine additions initially (0-2 h) enhanced MeHg formation by two mechanisms: (i) altering the Hg(II) partitioning from the cellular to the dissolved phase and/or (ii) shifting the chemical speciation of dissolved Hg(II) in favor of the Hg(Cys) complex. Nutrient additions increased MeHg formation by enhancing cell metabolism. These two effects were, however, not additive since cysteine was largely metabolized to penicillamine (PEN) over time at a rate that increased with nutrient addition. These processes shifted the speciation of dissolved Hg(II) from complexes with relatively high availability, Hg(Cys), to complexes with lower availability, Hg(PEN), for methylation. This thiol conversion by the cells thereby contributed to stalled MeHg formation after 2-6 h Hg(II) exposure. Overall, our results showed a complex influence of thiol metabolism on microbial MeHg formation and suggest that the conversion of cysteine to penicillamine may partly suppress MeHg formation in cysteine-rich environments like natural biofilms.

摘要

控制微生物形成甲基汞(MeHg)的化学和生物因素被广泛研究,但这些因素的综合影响在很大程度上尚不清楚。我们研究了二价无机汞(Hg(II))的化学形态,如由低分子量巯基控制,以及细胞生理学如何控制. 我们比较了在有和没有外加半胱氨酸(Cys)的情况下,实验测定中不同营养物和细菌代谢物浓度对 MeHg 形成的影响。半胱氨酸的添加最初(0-2 小时)通过两种机制增强了 MeHg 的形成:(i)改变细胞内到溶解相的 Hg(II)分配,和/或(ii)使溶解 Hg(II)的化学形态有利于 Hg(Cys)配合物。营养物的添加通过增强细胞代谢来增加 MeHg 的形成。然而,这两种效应不是加性的,因为随着时间的推移,半胱氨酸在营养物添加的速率下大部分代谢为青霉素胺(PEN)。这些过程将溶解 Hg(II)的形态从具有相对较高可用性的配合物(Hg(Cys))转移到可用性较低的配合物(Hg(PEN)),用于甲基化。因此,细胞中的这种巯基转化有助于在 2-6 小时 Hg(II)暴露后停止 MeHg 的形成。总的来说,我们的结果显示了巯基代谢对微生物 MeHg 形成的复杂影响,并表明半胱氨酸向青霉素胺的转化可能部分抑制了富含半胱氨酸的环境(如天然生物膜)中 MeHg 的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e64/10173453/86b68a69e44e/es3c00226_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验