文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于转录组数据对急性和烧伤伤口的小鼠和人类进行稳健的伤口愈合阶段分类。

Robust classification of wound healing stages in both mice and humans for acute and burn wounds based on transcriptomic data.

机构信息

University of California, Santa Cruz, CA, USA.

出版信息

BMC Bioinformatics. 2023 Apr 25;24(1):166. doi: 10.1186/s12859-023-05295-z.


DOI:10.1186/s12859-023-05295-z
PMID:37098473
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10127407/
Abstract

BACKGROUND: Wound healing involves careful coordination among various cell types carrying out unique or even multifaceted functions. The abstraction of this complex dynamic process into four primary wound stages is essential to the study of wound care for timing treatment and tracking wound progression. For example, a treatment that may promote healing in the inflammatory stage may prove detrimental in the proliferative stage. Additionally, the time scale of individual responses varies widely across and within the same species. Therefore, a robust method to assess wound stages can help advance translational work from animals to humans. RESULTS: In this work, we present a data-driven model that robustly identifies the dominant wound healing stage using transcriptomic data from biopsies gathered from mouse and human wounds, both burn and surgical. A training dataset composed of publicly available transcriptomic arrays is used to derive 58 shared genes that are commonly differentially expressed. They are divided into 5 clusters based on temporal gene expression dynamics. The clusters represent a 5-dimensional parametric space containing the wound healing trajectory. We then create a mathematical classification algorithm in the 5-dimensional space and demonstrate that it can distinguish between the four stages of wound healing: hemostasis, inflammation, proliferation, and remodeling. CONCLUSIONS: In this work, we present an algorithm for wound stage detection based on gene expression. This work suggests that there are universal characteristics of gene expression in wound healing stages despite the seeming disparities across species and wounds. Our algorithm performs well for human and mouse wounds of both burn and surgical types. The algorithm has the potential to serve as a diagnostic tool that can advance precision wound care by providing a way of tracking wound healing progression with more accuracy and finer temporal resolution compared to visual indicators. This increases the potential for preventive action.

摘要

背景:伤口愈合涉及各种细胞类型的精心协调,这些细胞执行独特甚至多方面的功能。将这个复杂的动态过程抽象为四个主要的伤口阶段,对于研究伤口护理的时机治疗和跟踪伤口进展至关重要。例如,在炎症阶段可能促进愈合的治疗方法在增殖阶段可能会造成伤害。此外,个体反应的时间尺度在不同物种之间和同一物种内差异很大。因此,一种稳健的方法来评估伤口阶段可以帮助将从动物到人类的转化工作推进。

结果:在这项工作中,我们提出了一种数据驱动的模型,该模型使用从小鼠和人类烧伤和手术伤口活检中收集的转录组数据,稳健地识别主导的伤口愈合阶段。一个由公开可用的转录组阵列组成的训练数据集用于得出 58 个共同差异表达的共享基因。它们根据时间基因表达动态分为 5 个簇。这些簇代表一个包含伤口愈合轨迹的 5 维参数空间。然后,我们在 5 维空间中创建一个数学分类算法,并证明它可以区分伤口愈合的四个阶段:止血、炎症、增殖和重塑。

结论:在这项工作中,我们提出了一种基于基因表达的伤口阶段检测算法。这项工作表明,尽管物种和伤口之间存在明显差异,但在伤口愈合阶段存在普遍的基因表达特征。我们的算法对烧伤和手术类型的人类和小鼠伤口都有很好的效果。该算法有可能成为一种诊断工具,通过提供一种比视觉指标更准确和更精细的时间分辨率来跟踪伤口愈合进展,从而提高精准伤口护理的潜力。这增加了采取预防措施的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/59039ad45007/12859_2023_5295_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/93d0c5263799/12859_2023_5295_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/035270eae719/12859_2023_5295_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/0e8423d8705f/12859_2023_5295_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/e9a19eeb68cb/12859_2023_5295_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/a4dbc07892f3/12859_2023_5295_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/2742de1464e4/12859_2023_5295_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/7098c6a491ed/12859_2023_5295_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/341af41503a4/12859_2023_5295_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/59039ad45007/12859_2023_5295_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/93d0c5263799/12859_2023_5295_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/035270eae719/12859_2023_5295_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/0e8423d8705f/12859_2023_5295_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/e9a19eeb68cb/12859_2023_5295_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/a4dbc07892f3/12859_2023_5295_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/2742de1464e4/12859_2023_5295_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/7098c6a491ed/12859_2023_5295_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/341af41503a4/12859_2023_5295_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f824/10127407/59039ad45007/12859_2023_5295_Fig9_HTML.jpg

相似文献

[1]
Robust classification of wound healing stages in both mice and humans for acute and burn wounds based on transcriptomic data.

BMC Bioinformatics. 2023-4-25

[2]
[Effects and mechanism of rat epidermal stem cells treated with exogenous vascular endothelial growth factor on healing of deep partial-thickness burn wounds in rats].

Zhonghua Shao Shang Za Zhi. 2020-3-20

[3]
Comparative Transcriptome Analysis of Superficial and Deep Partial-Thickness Burn Wounds in Yorkshire vs Red Duroc Pigs.

J Burn Care Res. 2022-11-2

[4]
Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy.

J Mol Med (Berl). 2016-7

[5]
Circular RNA expression profiles following negative pressure wound therapy in burn wounds with experimental infection.

Bioengineered. 2022-2

[6]
Development of dynamic cell and organotypic skin models, for the investigation of a novel visco-elastic burns treatment using molecular and cellular approaches.

Burns. 2020-11

[7]
Gene expression profile of cytokines and receptors of inflammation from cultured keratinocytes of burned patients.

Burns. 2014-8

[8]
Proteomics and transcriptomics explore the effect of mixture of herbal extract on diabetic wound healing process.

Phytomedicine. 2023-7-25

[9]
Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds.

ACS Biomater Sci Eng. 2022-9-12

[10]
The plasminogen receptor, Plg-R, plays a role in inflammation and fibrinolysis during cutaneous wound healing in mice.

Cell Death Dis. 2020-12-12

引用本文的文献

[1]
Evaluation of the Therapeutic Efficacy of the Newly Formulated Drug "Novostron" as an Experimental Basis for Clinical Trials.

ACS Omega. 2025-8-13

[2]
Functional and molecular insights in topical wound healing by ascorbic acid.

Naunyn Schmiedebergs Arch Pharmacol. 2025-5-3

[3]
Bone Morphogenetic Protein 7 Improves Wound Healing in Diabetes by Decreasing Inflammation and Promoting M2 Macrophage Polarization.

Int J Mol Sci. 2025-2-26

[4]
Comparative analysis of human and mouse transcriptomes during skin wound healing.

Front Cell Dev Biol. 2024-10-29

[5]
Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity.

Biomaterials. 2025-4

[6]
Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity.

bioRxiv. 2024-7-23

[7]
Wound Healing Promotion via Release of Therapeutic Metallic Ions from Phosphate Glass Fibers: An and Study.

ACS Appl Mater Interfaces. 2024-7-24

[8]
Ovulation provides excessive coagulation and hepatocyte growth factor signals to cause postoperative intraabdominal adhesions.

iScience. 2024-4-18

[9]
Plasma-Based Scaffold Containing Bone-Marrow Mononuclear Cells Promotes Wound Healing in a Mouse Model of Pressure Injury.

Cell Transplant. 2024

本文引用的文献

[1]
Control of cell state transitions.

Nature. 2022-9

[2]
Combined Metallomics/Transcriptomics Profiling Reveals a Major Role for Metals in Wound Repair.

Front Cell Dev Biol. 2021-11-30

[3]
A feedback control architecture for bioelectronic devices with applications to wound healing.

J R Soc Interface. 2021-12

[4]
An Epidermal-Specific Role for Arginase1 during Cutaneous Wound Repair.

J Invest Dermatol. 2022-4

[5]
Integrated spatial multiomics reveals fibroblast fate during tissue repair.

Proc Natl Acad Sci U S A. 2021-10-12

[6]
Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine.

Adv Wound Care (New Rochelle). 2022-6

[7]
Pre-Emptive Priming of Human Skin Improves Cutaneous Scarring and Is Superior to Immediate and Delayed Topical Anti-Scarring Treatment Post-Wounding: A Double-Blind Randomised Placebo-Controlled Clinical Trial.

Pharmaceutics. 2021-4-8

[8]
Transcriptomic Analysis of a Diabetic Skin-Humanized Mouse Model Dissects Molecular Pathways Underlying the Delayed Wound Healing Response.

Genes (Basel). 2020-12-31

[9]
Re-Examining the Paradigm of Impaired Healing in the Aged Murine Excision Wound Model.

J Invest Dermatol. 2021-4

[10]
Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics.

Cell Rep. 2020-3-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索