Suppr超能文献

基于监督和无监督学习的肺动脉高压风险分层和表型组合 - 一项长期回顾性多中心试验。

The combination of supervised and unsupervised learning based risk stratification and phenotyping in pulmonary arterial hypertension-a long-term retrospective multicenter trial.

机构信息

Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.

Data Analytics As a Service Tirol, Daas.Tirol, Innsbruck, Austria.

出版信息

BMC Pulm Med. 2023 Apr 25;23(1):143. doi: 10.1186/s12890-023-02427-2.

Abstract

BACKGROUND

Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical variability in PAH.

METHODS

We conducted a long-term retrospective observational study (median follow-up: 67 months) including 183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid clustering were applied to establish a multi-parameter PAH mortality risk signature and investigate PAH phenotypes.

RESULTS

Seven parameters identified by Elastic Net modeling, namely age, six-minute walking distance, red blood cell distribution width, cardiac index, pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide and right atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 0.75 - 0.89], test cohort: 0.77 [0.66 - 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct risk profiles. The high-risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac output, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six-minute walking test performance.

CONCLUSION

Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH.

摘要

背景

肺动脉高压(PAH)是一种严重的心肺疾病,准确的风险分层对于指导成功治疗至关重要。机器学习可以改善 PAH 的风险管理并利用临床变异性。

方法

我们进行了一项长期回顾性观察研究(中位随访时间:67 个月),纳入了来自奥地利三个 PAH 专家中心的 183 名 PAH 患者。评估了临床、心肺功能、实验室、影像学和血流动力学参数。应用 Cox 比例风险弹性网络和中位数聚类分区建立多参数 PAH 死亡率风险特征,并研究 PAH 表型。

结果

弹性网络模型确定的 7 个参数,即年龄、6 分钟步行距离、红细胞分布宽度、心指数、肺血管阻力、N 端脑利钠肽前体和右心房面积,构成了一个高度预测死亡率的风险特征(训练队列:一致性指数=0.82 [95%CI:0.75 - 0.89],测试队列:0.77 [0.66 - 0.88])。与五个既定风险评分相比,弹性网络签名具有更好的预后准确性。签名因素定义了具有不同风险特征的 PAH 患者两个聚类。高危/预后不良聚类的特点是诊断时年龄较大、心输出量低、红细胞分布宽度增加、肺血管阻力增加以及 6 分钟步行测试表现不佳。

结论

监督和无监督学习算法,如弹性网络回归和中位数聚类,是 PAH 自动死亡率预测和临床表型的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5385/10131314/6692646f4286/12890_2023_2427_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验