Suppr超能文献

铜绿假单胞菌生物膜基质蛋白 CdrA 与其他纤维状粘附蛋白具有相似性。

The Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Has Similarities to Other Fibrillar Adhesin Proteins.

机构信息

Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

J Bacteriol. 2023 May 25;205(5):e0001923. doi: 10.1128/jb.00019-23. Epub 2023 Apr 26.

Abstract

The ability of bacteria to adhere to each other and both biotic and abiotic surfaces is key to biofilm formation, and one way that bacteria adhere is using fibrillar adhesins. Fibrillar adhesins share several key characteristics, including (i) they are extracellular, surface-associated proteins, (ii) they contain an adhesive domain as well as a repetitive stalk domain, and (iii) they are either a monomer or homotrimer (i.e., identical, coiled-coil) of a high molecular weight protein. Pseudomonas aeruginosa uses the fibrillar adhesin called CdrA to promote bacterial aggregation and biofilm formation. Here, the current literature on CdrA is reviewed, including its transcriptional and posttranslational regulation by the second messenger c-di-GMP as well as what is known about its structure and ability to interact with other molecules. I highlight its similarities to other fibrillar adhesins and discuss open questions that remain to be answered toward a better understanding of CdrA.

摘要

细菌相互黏附和黏附于生物和非生物表面的能力是生物膜形成的关键,而细菌黏附的一种方式是使用纤维状黏附素。纤维状黏附素有几个关键特征,包括:(i) 它们是细胞外的、表面相关的蛋白质;(ii) 它们含有一个黏附结构域和一个重复的柄状结构域;以及 (iii) 它们是高分子量蛋白质的单体或同源三聚体(即相同的、卷曲螺旋)。铜绿假单胞菌使用称为 CdrA 的纤维状黏附素来促进细菌聚集和生物膜形成。本文综述了 CdrA 的现有文献,包括其转录和翻译后由第二信使 c-di-GMP 调节,以及已知的结构和与其他分子相互作用的能力。我强调了它与其他纤维状黏附素的相似之处,并讨论了仍有待回答的开放性问题,以更好地了解 CdrA。

相似文献

1
The Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Has Similarities to Other Fibrillar Adhesin Proteins.
J Bacteriol. 2023 May 25;205(5):e0001923. doi: 10.1128/jb.00019-23. Epub 2023 Apr 26.
3
Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix.
Mol Microbiol. 2010 Feb;75(4):827-42. doi: 10.1111/j.1365-2958.2009.06991.x. Epub 2010 Jan 17.
7
Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate.
J Bacteriol. 2015 Jun 22;198(1):66-76. doi: 10.1128/JB.00369-15. Print 2016 Jan 1.
8
Mucoid Pseudomonas aeruginosa Can Produce Calcium-Gelled Biofilms Independent of the Matrix Components Psl and CdrA.
J Bacteriol. 2022 May 17;204(5):e0056821. doi: 10.1128/jb.00568-21. Epub 2022 Apr 13.
9
Architecture of cell-cell junctions in situ reveals a mechanism for bacterial biofilm inhibition.
Proc Natl Acad Sci U S A. 2021 Aug 3;118(31). doi: 10.1073/pnas.2109940118.
10
High levels of cAMP inhibit Pseudomonas aeruginosa biofilm formation through reduction of the c-di-GMP content.
Microbiology (Reading). 2019 Mar;165(3):324-333. doi: 10.1099/mic.0.000772. Epub 2019 Jan 21.

引用本文的文献

1
Protein functional domain analysis enhances genotype-phenotype associations in comparative genomic studies of .
Front Microbiol. 2025 Aug 6;16:1569118. doi: 10.3389/fmicb.2025.1569118. eCollection 2025.
2
Pseudomonas aeruginosa: ecology, evolution, pathogenesis and antimicrobial susceptibility.
Nat Rev Microbiol. 2025 May 29. doi: 10.1038/s41579-025-01193-8.
3
Non-disruptive matrix turnover is a conserved feature of biofilm aggregate growth in paradigm pathogenic species.
mBio. 2025 Mar 12;16(3):e0393524. doi: 10.1128/mbio.03935-24. Epub 2025 Feb 21.
4
Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against antimicrobials.
Arch Microbiol. 2024 Oct 14;206(11):432. doi: 10.1007/s00203-024-04157-3.
5
Biodegradation of Nitrile Gloves as Sole Carbon Source of in Liquid Culture.
Polymers (Basel). 2024 Apr 20;16(8):1162. doi: 10.3390/polym16081162.
6
An apparent lack of synergy between degradative enzymes against biofilms.
MicroPubl Biol. 2024 Mar 25;2024. doi: 10.17912/micropub.biology.001119. eCollection 2024.
7
overexpression in affects biofilm formation and cell morphology in response to shear stress.
Biofilm. 2024 Mar 15;7:100191. doi: 10.1016/j.bioflm.2024.100191. eCollection 2024 Jun.
8
A genetic screen identifies a role for oprF in Pseudomonas aeruginosa biofilm stimulation by subinhibitory antibiotics.
NPJ Biofilms Microbiomes. 2024 Mar 23;10(1):30. doi: 10.1038/s41522-024-00496-7.
9
Tapping into the native Pseudomonas bacterial biofilm structure by high-resolution multidimensional solid-state NMR.
J Magn Reson. 2023 Dec;357:107587. doi: 10.1016/j.jmr.2023.107587. Epub 2023 Nov 10.
10
An apparent lack of synergy between degradative enzymes against biofilms.
bioRxiv. 2023 Oct 5:2023.10.05.561034. doi: 10.1101/2023.10.05.561034.

本文引用的文献

1
The biofilm matrix: multitasking in a shared space.
Nat Rev Microbiol. 2023 Feb;21(2):70-86. doi: 10.1038/s41579-022-00791-0. Epub 2022 Sep 20.
3
Large-Scale Discovery of Microbial Fibrillar Adhesins and Identification of Novel Members of Adhesive Domain Families.
J Bacteriol. 2022 Jun 21;204(6):e0010722. doi: 10.1128/jb.00107-22. Epub 2022 May 24.
4
The Wsp system of links surface sensing and cell envelope stress.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2117633119. doi: 10.1073/pnas.2117633119. Epub 2022 Apr 27.
6
Recent Advances in Electron Microscopy of Carbohydrate Nanoparticles.
Front Chem. 2022 Feb 15;10:835663. doi: 10.3389/fchem.2022.835663. eCollection 2022.
7
The Trimeric Autotransporter Adhesin YadA of Serotype O:9 Binds Glycan Moieties.
Front Microbiol. 2022 Feb 1;12:738818. doi: 10.3389/fmicb.2021.738818. eCollection 2021.
9
The role of Psl in the failure to eradicate Pseudomonas aeruginosa biofilms in children with cystic fibrosis.
NPJ Biofilms Microbiomes. 2021 Aug 4;7(1):63. doi: 10.1038/s41522-021-00234-3.
10
Architecture of cell-cell junctions in situ reveals a mechanism for bacterial biofilm inhibition.
Proc Natl Acad Sci U S A. 2021 Aug 3;118(31). doi: 10.1073/pnas.2109940118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验