Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109.
Laboratoire Matériaux, Polymères, Interfaces et Environnement Marin, Université de Toulon, 83041 Toulon, France.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2117633119. doi: 10.1073/pnas.2117633119. Epub 2022 Apr 27.
Surface sensing is a critical process that promotes the transition to a biofilm lifestyle. Several surface-sensing mechanisms have been described for a range of species, most involving surface appendages, such as flagella and pili. Pseudomonas aeruginosa uses the Wsp chemosensory-like signal transduction pathway to sense surfaces and promote biofilm formation. The methyl-accepting chemotaxis protein WspA recognizes an unknown surface-associated signal and initiates a phosphorylation cascade that activates the diguanylate cyclase WspR. We conducted a screen for Wsp-activating compounds and found that chemicals that impact the cell envelope induce Wsp signaling, increase intracellular c-di-GMP levels, and can promote surface attachment. To isolate the Wsp system from other P. aeruginosa surface-sensing systems, we heterologously expressed it in Escherichia coli and found it sufficient for sensing surfaces and the chemicals identified in our screen. Using well-characterized reporters for different E. coli cell envelope stress responses, we then determined that Wsp sensitivity overlapped with multiple E. coli cell envelope stress-response systems. Using mutational and CRISPRi analysis, we found that misfolded proteins in the periplasm appear to be a major stimulus of the Wsp system. Finally, we show that surface attachment appears to have an immediate, observable effect on cell envelope integrity. Collectively, our results provide experimental evidence that cell envelope stress represents an important feature of surface sensing in P. aeruginosa.
表面感应是促进向生物膜生活方式转变的关键过程。已经描述了几种用于多种物种的表面感应机制,大多数涉及表面附属物,例如鞭毛和菌毛。铜绿假单胞菌使用 Wsp 化学感受样信号转导途径来感应表面并促进生物膜形成。甲基受体趋化性蛋白 WspA 识别未知的表面相关信号,并启动磷酸化级联反应,激活二鸟苷酸环化酶 WspR。我们进行了 Wsp 激活化合物的筛选,发现影响细胞包膜的化学物质诱导 Wsp 信号转导,增加细胞内 c-di-GMP 水平,并能促进表面附着。为了将 Wsp 系统与铜绿假单胞菌的其他表面感应系统分离,我们在大肠杆菌中异源表达了它,发现它足以感应表面和我们筛选出的化学物质。然后,我们使用针对不同大肠杆菌细胞包膜应激反应的经过充分表征的报告基因,确定 Wsp 敏感性与多个大肠杆菌细胞包膜应激反应系统重叠。通过突变和 CRISPRi 分析,我们发现周质中错误折叠的蛋白质似乎是 Wsp 系统的主要刺激物。最后,我们表明表面附着似乎对细胞包膜完整性有直接的、可观察的影响。总的来说,我们的结果提供了实验证据,表明细胞包膜应激是铜绿假单胞菌表面感应的一个重要特征。