Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.
Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China.
Eur Radiol. 2023 Oct;33(10):6759-6770. doi: 10.1007/s00330-023-09672-3. Epub 2023 Apr 26.
The clinical ability of radiomics to predict intracranial aneurysm rupture risk remains unexplored. This study aims to investigate the potential uses of radiomics and explore whether deep learning (DL) algorithms outperform traditional statistical methods in predicting aneurysm rupture risk.
This retrospective study included 1740 patients with 1809 intracranial aneurysms confirmed by digital subtraction angiography at two hospitals in China from January 2014 to December 2018. We randomly divided the dataset (hospital 1) into training (80%) and internal validation (20%). External validation was performed using independent data collected from hospital 2. The prediction models were developed based on clinical, aneurysm morphological, and radiomics parameters by logistic regression (LR). Additionally, the DL model for predicting aneurysm rupture risk using integration parameters was developed and compared with other models.
The AUCs of LR models A (clinical), B (morphological), and C (radiomics) were 0.678, 0.708, and 0.738, respectively (all p < 0.05). The AUCs of the combined feature models D (clinical and morphological), E (clinical and radiomics), and F (clinical, morphological, and radiomics) were 0.771, 0.839, and 0.849, respectively. The DL model (AUC = 0.929) outperformed the machine learning (ML) (AUC = 0.878) and the LR models (AUC = 0.849). Also, the DL model has shown good performance in the external validation datasets (AUC: 0.876 vs 0.842 vs 0.823, respectively).
Radiomics signatures play an important role in predicting aneurysm rupture risk. DL methods outperformed conventional statistical methods in prediction models for the rupture risk of unruptured intracranial aneurysms, integrating clinical, aneurysm morphological, and radiomics parameters.
• Radiomics parameters are associated with the rupture risk of intracranial aneurysms. • The prediction model based on integrating parameters in the deep learning model was significantly better than a conventional model. • The radiomics signature proposed in this study could guide clinicians in selecting appropriate patients for preventive treatment.
放射组学预测颅内动脉瘤破裂风险的临床能力尚未得到探索。本研究旨在探讨放射组学的潜在用途,并研究深度学习(DL)算法在预测动脉瘤破裂风险方面是否优于传统统计学方法。
本回顾性研究纳入了 2014 年 1 月至 2018 年 12 月期间在中国的两家医院通过数字减影血管造影术确诊的 1740 例 1809 个颅内动脉瘤患者。我们将数据集(医院 1)随机分为训练集(80%)和内部验证集(20%)。使用来自医院 2 的独立数据进行外部验证。基于临床、动脉瘤形态和放射组学参数,通过逻辑回归(LR)构建预测模型。此外,还开发了使用集成参数预测动脉瘤破裂风险的 DL 模型,并与其他模型进行了比较。
LR 模型 A(临床)、B(形态学)和 C(放射组学)的 AUC 分别为 0.678、0.708 和 0.738(均 P<0.05)。组合特征模型 D(临床和形态学)、E(临床和放射组学)和 F(临床、形态学和放射组学)的 AUC 分别为 0.771、0.839 和 0.849。DL 模型(AUC=0.929)优于机器学习(ML)模型(AUC=0.878)和 LR 模型(AUC=0.849)。此外,DL 模型在外部验证数据集(AUC:0.876 vs 0.842 vs 0.823)中表现出良好的性能。
放射组学特征在预测动脉瘤破裂风险方面具有重要作用。在未破裂颅内动脉瘤破裂风险预测模型中,DL 方法优于传统统计学方法,整合了临床、动脉瘤形态和放射组学参数。
• 放射组学参数与颅内动脉瘤破裂风险相关。
• 基于深度学习模型中整合参数的预测模型明显优于传统模型。
• 本研究提出的放射组学特征可指导临床医生选择合适的患者进行预防性治疗。