Suppr超能文献

基于机器学习的放射组学-形态学模型对破裂大脑中动脉动脉瘤进行分类:一项多中心研究

Classifying Ruptured Middle Cerebral Artery Aneurysms With a Machine Learning Based, Radiomics-Morphological Model: A Multicentral Study.

作者信息

Zhu Dongqin, Chen Yongchun, Zheng Kuikui, Chen Chao, Li Qiong, Zhou Jiafeng, Jia Xiufen, Xia Nengzhi, Wang Hao, Lin Boli, Ni Yifei, Pang Peipei, Yang Yunjun

机构信息

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Department of Radiology, Wenzhou Central Hospital, Wenzhou, China.

出版信息

Front Neurosci. 2021 Aug 11;15:721268. doi: 10.3389/fnins.2021.721268. eCollection 2021.

Abstract

OBJECTIVE

Radiomics and morphological features were associated with aneurysms rupture. However, the multicentral study of their predictive power for specific-located aneurysms rupture is rare. We aimed to determine robust radiomics features related to middle cerebral artery (MCA) aneurysms rupture and evaluate the additional value of combining morphological and radiomics features in the classification of ruptured MCA aneurysms.

METHODS

A total of 632 patients with 668 MCA aneurysms (423 ruptured aneurysms) from five hospitals were included. Radiomics and morphological features of aneurysms were extracted on computed tomography angiography images. The model was developed using a training dataset (407 patients) and validated with the internal (152 patients) and external validation (73 patients) datasets. The support vector machine method was applied for model construction. Optimal radiomics, morphological, and clinical features were used to develop the radiomics model (R-model), morphological model (M-model), radiomics-morphological model (RM-model), clinical-morphological model (CM-model), and clinical-radiomics-morphological model (CRM-model), respectively. A comprehensive nomogram integrating clinical, morphological, and radiomics predictors was generated.

RESULTS

We found seven radiomics features and four morphological predictors of MCA aneurysms rupture. The R-model obtained an area under the receiver operating curve (AUC) of 0.822 (95% CI, 0.776, 0.867), 0.817 (95% CI, 0.744, 0.890), and 0.691 (95% CI, 0.567, 0.816) in the training, temporal validation, and external validation datasets, respectively. The RM-model showed an AUC of 0.848 (95% CI, 0.810, 0.885), 0.865 (95% CI, 0.807, 0.924), and 0.721 (95% CI, 0.601, 0.841) in the three datasets. The CRM-model obtained an AUC of 0.856 (95% CI, 0.820, 0.892), 0.882 (95% CI, 0.828, 0.936), and 0.738 (95% CI, 0.618, 0.857) in the three datasets. The CRM-model and RM-model outperformed the CM-model and M-model in the internal datasets ( < 0.05), respectively. But these differences were not statistically significant in the external dataset. Decision curve analysis indicated that the CRM-model obtained the highest net benefit for most of the threshold probabilities.

CONCLUSION

Robust radiomics features were determined related to MCA aneurysm rupture. The RM-model exhibited good ability in classifying ruptured MCA aneurysms. Integrating radiomics features into conventional models might provide additional value in ruptured MCA aneurysms classification.

摘要

目的

放射组学和形态学特征与动脉瘤破裂相关。然而,针对特定部位动脉瘤破裂预测能力的多中心研究较为罕见。我们旨在确定与大脑中动脉(MCA)动脉瘤破裂相关的可靠放射组学特征,并评估在破裂MCA动脉瘤分类中结合形态学和放射组学特征的附加价值。

方法

纳入来自五家医院的632例患者的668个MCA动脉瘤(423个破裂动脉瘤)。在计算机断层血管造影图像上提取动脉瘤的放射组学和形态学特征。使用训练数据集(407例患者)建立模型,并通过内部验证数据集(152例患者)和外部验证数据集(73例患者)进行验证。应用支持向量机方法构建模型。分别使用最佳放射组学、形态学和临床特征构建放射组学模型(R模型)、形态学模型(M模型)、放射组学 - 形态学模型(RM模型)、临床 - 形态学模型(CM模型)和临床 - 放射组学 - 形态学模型(CRM模型)。生成一个整合临床、形态学和放射组学预测因子的综合列线图。

结果

我们发现了7个MCA动脉瘤破裂的放射组学特征和4个形态学预测因子。R模型在训练、时间验证和外部验证数据集中的受试者操作特征曲线下面积(AUC)分别为0.822(95%CI,0.776,0.867)、0.817(95%CI,0.744,0.890)和0.691(95%CI,0.567,0.816)。RM模型在三个数据集中的AUC分别为0.848(95%CI,0.810,0.885)、0.865(95%CI,0.807,0.924)和0.721(95%CI,0.601,0.841)。CRM模型在三个数据集中的AUC分别为0.856(95%CI,0.820,0.892)、0.882(95%CI,0.828,0.936)和0.738(95%CI,0.618,0.857)。在内部数据集中,CRM模型和RM模型分别优于CM模型和M模型(<0.05)。但在外部数据集中这些差异无统计学意义。决策曲线分析表明,CRM模型在大多数阈值概率下获得了最高的净效益。

结论

确定了与MCA动脉瘤破裂相关的可靠放射组学特征。RM模型在破裂MCA动脉瘤分类中表现出良好能力。将放射组学特征整合到传统模型中可能为破裂MCA动脉瘤分类提供附加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/8385786/f339cf67fafc/fnins-15-721268-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验