Graduate School of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
Nanoscale. 2023 May 18;15(19):8603-8610. doi: 10.1039/d3nr00533j.
Quasi-Casimir coupling can induce phonon heat transfer across a sub-nanometer vacuum gap between monoatomic solid walls without electromagnetic fields. However, it remains unclear how the atomic surface terminations in diatomic molecules contribute to phonon transmission across a nanogap. Herein, we study the thermal energy transport across an SiC-SiC nanogap with four pairs of atomic surface terminations using classical nonequilibrium molecular dynamics simulations. In the case of identical atomic surface terminations, the net heat flux and thermal gap conductance are much greater than those in the nonidentical cases. Thermal resonance occurs between identical atomic terminated layers, whereas it vanishes between nonidentical ones. A notable heat transfer enhancement in the identical case of C-C is due to optical phonon transmission, with thermal resonance between the C-terminated layers. Our findings deepen the understanding of phonon heat transfer across a nanogap and provide insights into thermal management in nanoscale SiC power devices.
准 Casimir 耦合可以在单原子固体壁之间的亚纳米真空间隙中诱导声子热传递,而无需电磁场。然而,双原子分子中的原子表面终止如何有助于纳米间隙中的声子传输仍不清楚。在此,我们使用经典非平衡分子动力学模拟研究了 SiC-SiC 纳米间隙中热能的传输,该纳米间隙具有四对原子表面终止。在原子表面终止相同的情况下,净热通量和热隙电导比非相同情况大得多。相同原子终止层之间发生热共振,而非相同原子终止层之间则没有。相同 C-C 情况下的显著传热增强是由于光学声子传输以及 C 终止层之间的热共振所致。我们的发现加深了对纳米间隙中声子热传递的理解,并为纳米级 SiC 功率器件的热管理提供了思路。