Department of Computer Science, Sangmyung University, Seoul, South Korea.
Technological Convergence Center, Korea Institute of Science and Technology, Seoul, South Korea.
PLoS One. 2023 Apr 26;18(4):e0284298. doi: 10.1371/journal.pone.0284298. eCollection 2023.
As of 2022, COVID-19, first reported in Wuhan, China, in November 2019, has become a worldwide epidemic, causing numerous infections and casualties and enormous social and economic damage. To mitigate its impact, various COVID-19 prediction studies have emerged, most of them using mathematical models and artificial intelligence for prediction. However, the problem with these models is that their prediction accuracy is considerably reduced when the duration of the COVID-19 outbreak is short. In this paper, we propose a new prediction method combining Word2Vec and the existing long short-term memory and Seq2Seq + Attention model. We compare the prediction error of the existing and proposed models with the COVID-19 prediction results reported from five US states: California, Texas, Florida, New York, and Illinois. The results of the experiment show that the proposed model combining Word2Vec and the existing long short-term memory and Seq2Seq + Attention achieves better prediction results and lower errors than the existing long short-term memory and Seq2Seq + Attention models. In experiments, the Pearson correlation coefficient increased by 0.05 to 0.21 and the RMSE decreased by 0.03 to 0.08 compared to the existing method.
截至 2022 年,2019 年 11 月在中国武汉首次报告的 COVID-19 已成为全球性大流行,造成了大量感染和死亡,并造成了巨大的社会和经济损失。为了减轻其影响,出现了各种 COVID-19 预测研究,其中大多数使用数学模型和人工智能进行预测。然而,这些模型的问题是,当 COVID-19 爆发持续时间较短时,它们的预测精度会大大降低。在本文中,我们提出了一种将 Word2Vec 与现有的长短期记忆和 Seq2Seq + Attention 模型相结合的新预测方法。我们将现有模型和提出的模型的预测误差与来自美国五个州(加利福尼亚州、德克萨斯州、佛罗里达州、纽约州和伊利诺伊州)的 COVID-19 预测结果进行了比较。实验结果表明,与现有的长短期记忆和 Seq2Seq + Attention 模型相比,结合了 Word2Vec 的现有长短期记忆和 Seq2Seq + Attention 的提出的模型可以实现更好的预测结果和更低的误差。在实验中,与现有方法相比,Pearson 相关系数增加了 0.05 到 0.21,RMSE 降低了 0.03 到 0.08。