Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.
Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
Adv Mater. 2023 Aug;35(32):e2300756. doi: 10.1002/adma.202300756. Epub 2023 Jun 22.
Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.
生物制造的主要挑战在于捕捉天然组织的复杂层次结构。然而,单独的 3D 打印技术在生产具有多尺度分辨率的复合生物材料方面能力有限。体积生物打印最近成为生物制造的范式转变。这项超快的基于光的技术以无层的方式将细胞负载的水凝胶生物树脂雕刻成 3D 结构,为传统的生物打印提供了更高的设计自由度。然而,由于使用了柔软、适合细胞的水凝胶,因此打印品的机械稳定性较低。本文展示了将体积生物打印与熔融静电纺丝相结合的可能性,熔融静电纺丝在微纤维图案化方面表现出色,用于制造具有增强机械性能的管状水凝胶基复合材料。尽管在体积打印过程中包含不透明的熔融静电纺丝支架,但仍成功实现了高分辨率的生物打印结构。通过改变电纺网的设计来调整打印管的拉伸、破裂和弯曲机械性能,从而制造出具有可定制各向异性几何形状的复杂多材料管状结构,更好地模拟复杂的生物管状结构。作为概念验证,通过构建三层细胞负载血管来获得工程管状结构,并使用这种混合方法快速打印特征(瓣膜、分支、开窗)。这种多技术融合为制造具有层次结构和可调节机械性能的多材料活体结构提供了新的工具包。