Suppr超能文献

相似文献

1
An unexpected hydratase synthesizes the green light-absorbing pigment fucoxanthin.
Plant Cell. 2023 Aug 2;35(8):3053-3072. doi: 10.1093/plcell/koad116.
2
Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin.
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2203708119. doi: 10.1073/pnas.2203708119. Epub 2022 Sep 12.
7
Exploring the potential of photosynthetic induction factor for the commercial production of fucoxanthin in Phaeodactylum tricornutum.
Bioprocess Biosyst Eng. 2021 Aug;44(8):1769-1779. doi: 10.1007/s00449-021-02559-x. Epub 2021 Apr 12.
8
Exogenous Arachidonic Acid Affects Fucoxanthin Biosynthesis and Photoprotection in .
Mar Drugs. 2022 Oct 17;20(10):644. doi: 10.3390/md20100644.
9
Rapid Sorting of Fucoxanthin-Producing Mutants by Flow Cytometry.
Mar Drugs. 2021 Apr 17;19(4):228. doi: 10.3390/md19040228.
10
Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities.
Photosynth Res. 2020 Dec;146(1-3):227-234. doi: 10.1007/s11120-020-00714-1. Epub 2020 Jan 21.

引用本文的文献

2
Metabolic engineering of Saccharomyces cerevisiae for neoxanthin production.
Microb Cell Fact. 2025 Aug 1;24(1):176. doi: 10.1186/s12934-025-02789-8.
3
Metabolic engineering and cultivation strategies for efficient production of fucoxanthin and related carotenoids.
Appl Microbiol Biotechnol. 2025 Mar 4;109(1):57. doi: 10.1007/s00253-025-13441-1.
4
5
Identifying the gene responsible for non-photochemical quenching reversal in Phaeodactylum tricornutum.
Plant J. 2024 Dec;120(5):2113-2126. doi: 10.1111/tpj.17104. Epub 2024 Oct 30.
7
The role of -zeatin in enhancing high-temperature resistance and fucoxanthin biosynthesis in .
Appl Environ Microbiol. 2024 Jun 18;90(6):e0206823. doi: 10.1128/aem.02068-23. Epub 2024 May 24.
9
A key gene, violaxanthin de-epoxidase-like 1, enhances fucoxanthin accumulation in Phaeodactylum tricornutum.
Biotechnol Biofuels Bioprod. 2024 Apr 2;17(1):49. doi: 10.1186/s13068-024-02496-3.
10
Overexpression of PtVDL1 in Increases Fucoxanthin Content under Red Light.
J Microbiol Biotechnol. 2024 Jan 28;34(1):198-206. doi: 10.4014/jmb.2309.09018. Epub 2023 Oct 20.

本文引用的文献

1
2
Enhancement of violaxanthin accumulation in by overexpressing a carotenoid isomerase gene from .
Front Microbiol. 2022 Aug 31;13:942883. doi: 10.3389/fmicb.2022.942883. eCollection 2022.
3
Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin.
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2203708119. doi: 10.1073/pnas.2203708119. Epub 2022 Sep 12.
4
5
Diversity and origin of carotenoid biosynthesis: its history of coevolution towards plant photosynthesis.
New Phytol. 2021 Oct;232(2):479-493. doi: 10.1111/nph.17655. Epub 2021 Aug 19.
6
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
8
Photosynthesis without β-carotene.
Elife. 2020 Sep 25;9:e58984. doi: 10.7554/eLife.58984.
9
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
10
Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom.
New Phytol. 2020 Nov;228(3):946-958. doi: 10.1111/nph.16744. Epub 2020 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验