Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China.
Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China.
Plant Cell. 2023 Aug 2;35(8):3053-3072. doi: 10.1093/plcell/koad116.
The ketocarotenoid fucoxanthin and its derivatives can absorb blue-green light enriched in marine environments. Fucoxanthin is widely adopted by phytoplankton species as a main light-harvesting pigment, in contrast to land plants that primarily employ chlorophylls. Despite its supreme abundance in the oceans, the last steps of fucoxanthin biosynthesis have remained elusive. Here, we identified the carotenoid isomerase-like protein CRTISO5 as the diatom fucoxanthin synthase that is related to the carotenoid cis-trans isomerase CRTISO from land plants but harbors unexpected enzymatic activity. A crtiso5 knockout mutant in the model diatom Phaeodactylum tricornutum completely lacked fucoxanthin and accumulated the acetylenic carotenoid phaneroxanthin. Recombinant CRTISO5 converted phaneroxanthin into fucoxanthin in vitro by hydrating its carbon-carbon triple bond, instead of functioning as an isomerase. Molecular docking and mutational analyses revealed residues essential for this activity. Furthermore, a photophysiological characterization of the crtiso5 mutant revealed a major structural and functional role of fucoxanthin in photosynthetic pigment-protein complexes of diatoms. As CRTISO5 hydrates an internal alkyne physiologically, the enzyme has unique potential for biocatalytic applications. The discovery of CRTISO5 illustrates how neofunctionalization leads to major diversification events in evolution of photosynthetic mechanisms and the prominent brown coloration of most marine photosynthetic eukaryotes.
酮类胡萝卜素岩藻黄质及其衍生物可以吸收富含海洋环境的蓝绿光。岩藻黄质被浮游植物广泛采用作为主要的光捕获色素,而与陆地植物不同,陆地植物主要采用叶绿素。尽管它在海洋中极为丰富,但岩藻黄质生物合成的最后几步仍然难以捉摸。在这里,我们鉴定出类胡萝卜素异构酶样蛋白 CRTISO5 是硅藻岩藻黄质合酶,它与陆地植物的类胡萝卜素顺反异构酶 CRTISO 有关,但具有意想不到的酶活性。模式硅藻三角褐指藻中的 crtiso5 敲除突变体完全缺乏岩藻黄质并积累了炔烃类胡萝卜素叶黄素。重组 CRTISO5 在体外通过水合其碳-碳三键将叶黄素转化为岩藻黄质,而不是作为异构酶发挥作用。分子对接和突变分析揭示了该活性所必需的残基。此外,对 crtiso5 突变体的光生理特性进行了表征,揭示了岩藻黄质在硅藻光合色素-蛋白复合物中的主要结构和功能作用。由于 CRTISO5 生理上使内部炔烃水合,因此该酶具有独特的生物催化应用潜力。CRTISO5 的发现说明了新功能化如何导致光合作用机制进化中的重大多样化事件以及大多数海洋光合真核生物的显著棕色着色。