Suppr超能文献

化学和生化反应网络奇异摄动的自然参数条件

Natural Parameter Conditions for Singular Perturbations of Chemical and Biochemical Reaction Networks.

作者信息

Eilertsen Justin, Schnell Santiago, Walcher Sebastian

机构信息

Mathematical Reviews, American Mathematical Society, 416 4th Street, Ann Arbor, MI, 48103, USA.

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.

出版信息

Bull Math Biol. 2023 Apr 26;85(6):48. doi: 10.1007/s11538-023-01150-7.

Abstract

We consider reaction networks that admit a singular perturbation reduction in a certain parameter range. The focus of this paper is on deriving "small parameters" (briefly for small perturbation parameters), to gauge the accuracy of the reduction, in a manner that is consistent, amenable to computation and permits an interpretation in chemical or biochemical terms. Our work is based on local timescale estimates via ratios of the real parts of eigenvalues of the Jacobian near critical manifolds. This approach modifies the one introduced by Segel and Slemrod and is familiar from computational singular perturbation theory. While parameters derived by this method cannot provide universal quantitative estimates for the accuracy of a reduction, they represent a critical first step toward this end. Working directly with eigenvalues is generally unfeasible, and at best cumbersome. Therefore we focus on the coefficients of the characteristic polynomial to derive parameters, and relate them to timescales. Thus, we obtain distinguished parameters for systems of arbitrary dimension, with particular emphasis on reduction to dimension one. As a first application, we discuss the Michaelis-Menten reaction mechanism system in various settings, with new and perhaps surprising results. We proceed to investigate more complex enzyme catalyzed reaction mechanisms (uncompetitive, competitive inhibition and cooperativity) of dimension three, with reductions to dimension one and two. The distinguished parameters we derive for these three-dimensional systems are new. In fact, no rigorous derivation of small parameters seems to exist in the literature so far. Numerical simulations are included to illustrate the efficacy of the parameters obtained, but also to show that certain limitations must be observed.

摘要

我们考虑在特定参数范围内允许奇异摄动简化的反应网络。本文的重点是推导“小参数”(简称为小摄动参数),以便以一种一致、便于计算且允许从化学或生物化学角度进行解释的方式来衡量简化的准确性。我们的工作基于通过临界流形附近雅可比矩阵特征值实部的比率进行局部时间尺度估计。这种方法修改了由Segel和Slemrod引入的方法,并且在计算奇异摄动理论中是常见的。虽然通过这种方法导出的参数不能为简化的准确性提供通用的定量估计,但它们代表了朝着这个目标迈出的关键第一步。直接处理特征值通常是不可行的,而且至多很麻烦。因此,我们专注于特征多项式的系数来推导参数,并将它们与时间尺度联系起来。这样,我们就得到了任意维度系统的特征参数,特别强调简化到一维的情况。作为第一个应用,我们在各种情况下讨论米氏反应机制系统,得到了新的、可能令人惊讶的结果。我们接着研究三维的更复杂的酶催化反应机制(非竞争性、竞争性抑制和协同性),并简化到一维和二维。我们为这些三维系统推导的特征参数是新的。事实上,到目前为止,文献中似乎还没有对小参数进行严格的推导。文中包含了数值模拟,以说明所获得参数的有效性,但同时也表明必须注意某些局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验