Maciel Larissa G, Ferraz Matheus V F, Oliveira Andrew A, Lins Roberto D, Dos Anjos Janaína V, Guido Rafael V C, Soares Thereza A
Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560 Recife, Brazil.
Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50740-465 Recife, Brazil.
ACS Bio Med Chem Au. 2023 Feb 16;3(2):211-222. doi: 10.1021/acsbiomedchemau.2c00080. eCollection 2023 Apr 19.
Arboviral infections such as Zika, chikungunya, dengue, and yellow fever pose significant health problems globally. The population at risk is expanding with the geographical distribution of the main transmission vector of these viruses, the mosquito. The global spreading of this mosquito is driven by human migration, urbanization, climate change, and the ecological plasticity of the species. Currently, there are no specific treatments for -borne infections. One strategy to combat different mosquito-borne arboviruses is to design molecules that can specifically inhibit a critical host protein. We obtained the crystal structure of 3-hydroxykynurenine transaminase (AeHKT) from , an essential detoxification enzyme of the tryptophan metabolism pathway. Since AeHKT is found exclusively in mosquitoes, it provides the ideal molecular target for the development of inhibitors. Therefore, we determined and compared the free binding energy of the inhibitors 4-(2-aminophenyl)-4-oxobutyric acid (4OB) and sodium 4-(3-phenyl-1,2,4-oxadiazol-5-yl)butanoate (OXA) to AeHKT and AgHKT from , the only crystal structure of this enzyme previously known. The cocrystallized inhibitor 4OB binds to AgHKT with of 300 μM. We showed that OXA binds to both AeHKT and AgHKT enzymes with binding energies 2-fold more favorable than the crystallographic inhibitor 4OB and displayed a 2-fold greater residence time τ upon binding to AeHKT than 4OB. These findings indicate that the 1,2,4-oxadiazole derivatives are inhibitors of the HKT enzyme not only from but also from .
寨卡病毒、基孔肯雅病毒、登革热病毒和黄热病等虫媒病毒感染在全球范围内引发了严重的健康问题。随着这些病毒主要传播媒介蚊子的地理分布范围扩大,面临感染风险的人群也在增加。这种蚊子在全球的传播受到人类迁移、城市化、气候变化以及该物种生态可塑性的推动。目前,尚无针对虫媒感染的特效治疗方法。对抗不同蚊媒虫媒病毒的一种策略是设计能够特异性抑制关键宿主蛋白的分子。我们获得了来自埃及伊蚊的3-羟基犬尿氨酸转氨酶(AeHKT)的晶体结构,它是色氨酸代谢途径中的一种重要解毒酶。由于AeHKT仅在蚊子中发现,它为开发抑制剂提供了理想的分子靶点。因此,我们测定并比较了抑制剂4-(2-氨基苯基)-4-氧代丁酸(4OB)和4-(3-苯基-1,2,4-恶二唑-5-基)丁酸钠(OXA)与埃及伊蚊的AeHKT以及此前唯一已知该酶晶体结构的冈比亚按蚊AgHKT的自由结合能。共结晶抑制剂4OB与AgHKT的结合亲和力为300μM。我们发现OXA与AeHKT和AgHKT酶的结合能比晶体学抑制剂4OB更有利2倍,并且与AeHKT结合时的驻留时间τ比4OB长2倍。这些发现表明,1,2,4-恶二唑衍生物不仅是埃及伊蚊HKT酶的抑制剂,也是冈比亚按蚊HKT酶的抑制剂。