Suppr超能文献

基于微生物检测阵列改良的监测工具在野外采集的蚊虫中揭示的虫媒病毒和昆虫特异性病毒。

Mosquito-Borne Viruses and Insect-Specific Viruses Revealed in Field-Collected Mosquitoes by a Monitoring Tool Adapted from a Microbial Detection Array.

机构信息

Department of Entomology, Texas A&M University, College Station, Texas, USA

Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.

出版信息

Appl Environ Microbiol. 2019 Sep 17;85(19). doi: 10.1128/AEM.01202-19. Print 2019 Oct 1.

Abstract

Several mosquito-borne diseases affecting humans are emerging or reemerging in the United States. The early detection of pathogens in mosquito populations is essential to prevent and control the spread of these diseases. In this study, we tested the potential applicability of the Lawrence Livermore Microbial Detection Array (LLMDA) to enhance biosurveillance by detecting microbes present in , , and mosquitoes, which are major vector species globally, including in Texas. The sensitivity and reproducibility of the LLMDA were tested in mosquito samples spiked with different concentrations of dengue virus (DENV), revealing a detection limit of >100 but <1,000 PFU/ml. Additionally, field-collected mosquitoes from Chicago, IL, and College Station, TX, of known infection status (West Nile virus [WNV] and flavivirus [CxFLAV] positive) were tested on the LLMDA to confirm its efficiency. Mosquito field samples of unknown infection status, collected in San Antonio, TX, and the Lower Rio Grande Valley (LRGV), TX, were run on the LLMDA and further confirmed by PCR or quantitative PCR (qPCR). The analysis of the field samples with the LLMDA revealed the presence of cell-fusing agent virus (CFAV) in populations. was also detected in several of the field samples ( and spp.) by the LLMDA. Our findings demonstrated that the LLMDA can be used to detect multiple arboviruses of public health importance, including viruses that belong to the , , and genera. Additionally, insect-specific viruses and bacteria were also detected in field-collected mosquitoes. Another strength of this array is its ability to detect multiple viruses in the same mosquito pool, allowing for the detection of cocirculating pathogens in an area and the identification of potential ecological associations between different viruses. This array can aid in the biosurveillance of mosquito-borne viruses circulating in specific geographical areas. Viruses associated with mosquitoes have made a large impact on public and veterinary health. In the United States, several viruses, including WNV, DENV, and chikungunya virus (CHIKV), are responsible for human disease. From 2015 to 2018, imported Zika cases were reported in the United States, and in 2016 to 2017, local Zika transmission occurred in the states of Texas and Florida. With globalization and a changing climate, the frequency of outbreaks linked to arboviruses will increase, revealing a need to better detect viruses in vector populations. With the capacity of the LLMDA to detect viruses, bacteria, and fungi, this study highlights its ability to broadly screen field-collected mosquitoes and contribute to the surveillance and management of arboviral diseases.

摘要

几种影响人类的蚊媒传染病正在美国出现或重新出现。早期检测蚊群中的病原体对于预防和控制这些疾病的传播至关重要。在这项研究中,我们测试了劳伦斯利弗莫尔微生物检测阵列(LLMDA)检测存在于、和 蚊子(包括德克萨斯州在内的全球主要媒介物种)中的微生物的潜在适用性,以增强生物监测。我们测试了用不同浓度登革热病毒(DENV)接种的蚊子样本中 LLMDA 的灵敏度和重现性,结果显示检测限为 >100 但 <1,000 PFU/ml。此外,我们还在 LLMDA 上测试了来自伊利诺伊州芝加哥和德克萨斯州大学城的已知感染状态(西尼罗河病毒[WNV]和 黄病毒[CxFLAV]阳性)的野外采集蚊子,以确认其效率。我们在德克萨斯州圣安东尼奥和下里奥格兰德河谷(LRGV)采集了未知感染状态的野外蚊子样本,并在 LLMDA 上运行,然后通过 PCR 或定量 PCR(qPCR)进一步确认。使用 LLMDA 对野外样本的分析显示,在 种群中存在细胞融合剂病毒(CFAV)。LLMDA 还检测到几种野外样本(和 spp.)中的 。我们的研究结果表明,LLMDA 可用于检测多种具有公共卫生重要性的虫媒病毒,包括属于 、 和 属的病毒。此外,还在野外采集的蚊子中检测到昆虫特异性病毒和细菌。该阵列的另一个优势是能够在同一蚊子池中检测多种病毒,从而可以在一个地区检测到循环病原体,并确定不同病毒之间的潜在生态关联。该阵列可以帮助对特定地理区域中循环的蚊媒病毒进行生物监测。与蚊子相关的病毒对公共卫生和兽医健康产生了重大影响。在美国,几种病毒,包括西尼罗河病毒、登革热病毒和基孔肯雅病毒(CHIKV),导致了人类疾病。从 2015 年到 2018 年,美国报告了输入性寨卡病毒病例,2016 年至 2017 年,德克萨斯州和佛罗里达州发生了本地寨卡病毒传播。随着全球化和气候变化,与虫媒病毒有关的疫情爆发频率将会增加,这表明需要更好地检测媒介种群中的病毒。由于 LLMDA 具有检测病毒、细菌和真菌的能力,因此本研究强调了它广泛筛选野外采集蚊子的能力,并有助于对虫媒病毒病的监测和管理。

相似文献

2
Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes .
J Virol. 2019 Aug 28;93(18). doi: 10.1128/JVI.00705-19. Print 2019 Sep 15.
6
Vertical and Horizontal Transmission of Cell Fusing Agent Virus in Aedes aegypti.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0106222. doi: 10.1128/aem.01062-22. Epub 2022 Aug 29.

引用本文的文献

1
Vertical transmission of Dengue virus type-3 and metagenomic virome profiles of Aedes aegypti mosquitoes collected in Kisumu, Kenya.
PLoS One. 2025 Jul 2;20(7):e0315492. doi: 10.1371/journal.pone.0315492. eCollection 2025.
3
Metatranscriptomic analysis of common mosquito vector species in the Canadian Prairies.
mSphere. 2024 Jul 30;9(7):e0020324. doi: 10.1128/msphere.00203-24. Epub 2024 Jun 24.
4
A tangled threesome: understanding arbovirus infection in spp. and the effect of the mosquito microbiota.
Front Microbiol. 2024 Jan 3;14:1287519. doi: 10.3389/fmicb.2023.1287519. eCollection 2023.
5
Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics.
PLoS Pathog. 2023 Aug 31;19(8):e1011588. doi: 10.1371/journal.ppat.1011588. eCollection 2023 Aug.
6
Evaluation of co-circulating pathogens and microbiome from COVID-19 infections.
PLoS One. 2022 Dec 1;17(12):e0278543. doi: 10.1371/journal.pone.0278543. eCollection 2022.
7
Vertical and Horizontal Transmission of Cell Fusing Agent Virus in Aedes aegypti.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0106222. doi: 10.1128/aem.01062-22. Epub 2022 Aug 29.
8
Flavivirus: From Structure to Therapeutics Development.
Life (Basel). 2021 Jun 25;11(7):615. doi: 10.3390/life11070615.

本文引用的文献

2
Detection and clearance of a mosquito densovirus contaminant from laboratory stocks of Zika virus.
Mem Inst Oswaldo Cruz. 2019 Feb 7;114:e180432. doi: 10.1590/0074-02760180432.
3
Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus.
Emerg Microbes Infect. 2018 Nov 15;7(1):181. doi: 10.1038/s41426-018-0180-4.
4
Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey.
Parasit Vectors. 2018 Mar 20;11(1):198. doi: 10.1186/s13071-018-2777-9.
6
Genomes of viral isolates derived from different mosquitos species.
Virus Res. 2017 Oct 15;242:49-57. doi: 10.1016/j.virusres.2017.08.012. Epub 2017 Sep 21.
7
Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines.
Sci Rep. 2017 Jul 31;7(1):6935. doi: 10.1038/s41598-017-07279-5.
8
Experimental Infection with and Maintenance of Cell Fusing Agent Virus () in .
Am J Trop Med Hyg. 2017 Jul;97(1):299-304. doi: 10.4269/ajtmh.16-0987.
10
Culex Flavivirus During West Nile Virus Epidemic and Interepidemic Years in Chicago, United States.
Vector Borne Zoonotic Dis. 2017 Aug;17(8):567-575. doi: 10.1089/vbz.2017.2124. Epub 2017 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验