Brenneis Rebecca J, Johnson Eric P, Shi Wenbo, Plata Desiree L
Ralph M. Parsons Laboratory, School of Engineering, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, Massachusetts 02139-4307, United States.
School of Engineering and Applied Sciences, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06520, United States.
ACS Environ Au. 2021 Dec 29;2(3):223-231. doi: 10.1021/acsenvironau.1c00034. eCollection 2022 May 18.
Climate action scenarios that limit changes in global temperature to less than 1.5 °C require methane controls, yet there are no abatement technologies effective for the treatment of low-level methane. Here, we describe the use of a biomimetic copper zeolite capable of converting atmospheric- and low-level methane at relatively low temperatures (, 200-300 °C) in simulated air. Depending on the duty cycle, 40%, over 60%, or complete conversion could be achieved ( a two-step process at 450 °C activation and 200 °C reaction or a short and long activation under isothermal 310 °C conditions, respectively). Improved performance at longer activation was attributed to active site evolution, as determined by X-ray diffraction. The conversion rate increased over a range of methane concentrations (0.00019-2%), indicating the potential to abate methane from any sub-flammable stream. Finally, the uncompromised catalyst turnover for 300 h in simulated air illustrates the promise of using low-cost, earth-abundant materials to mitigate methane and slow the pace of climate change.
将全球气温变化限制在1.5摄氏度以内的气候行动方案需要控制甲烷排放,但目前尚无有效的减排技术可用于处理低浓度甲烷。在此,我们描述了一种仿生铜沸石的应用,它能够在模拟空气中相对较低的温度(200-300摄氏度)下转化大气中的低浓度甲烷。根据工作循环的不同,可实现40%、超过60%或完全转化(分别为在450摄氏度下活化并在200摄氏度下反应的两步过程,或在310摄氏度等温条件下进行短时间和长时间活化)。如X射线衍射所确定的,长时间活化时性能的提升归因于活性位点的演化。转化率在一系列甲烷浓度(0.00019%-2%)范围内有所提高,这表明从任何低于可燃下限的气流中减排甲烷具有潜力。最后,该催化剂在模拟空气中300小时内保持不变的催化活性,说明了使用低成本、储量丰富的材料来减少甲烷排放并减缓气候变化速度的前景。