Kanadath Anusree, Angel Arul Jothi J, Urolagin Siddhaling
Department of Computer Science, Birla Institute of Technology and Science Pilani, Dubai International Academic City, Dubai P.O. Box 345055, United Arab Emirates.
J Imaging. 2023 Mar 29;9(4):78. doi: 10.3390/jimaging9040078.
Histopathology image analysis is considered as a gold standard for the early diagnosis of serious diseases such as cancer. The advancements in the field of computer-aided diagnosis (CAD) have led to the development of several algorithms for accurately segmenting histopathology images. However, the application of swarm intelligence for segmenting histopathology images is less explored. In this study, we introduce a Multilevel Multiobjective Particle Swarm Optimization guided Superpixel algorithm (MMPSO-S) for the effective detection and segmentation of various regions of interest (ROIs) from Hematoxylin and Eosin (H&E)-stained histopathology images. Several experiments are conducted on four different datasets such as TNBC, MoNuSeg, MoNuSAC, and LD to ascertain the performance of the proposed algorithm. For the TNBC dataset, the algorithm achieves a Jaccard coefficient of 0.49, a Dice coefficient of 0.65, and an F-measure of 0.65. For the MoNuSeg dataset, the algorithm achieves a Jaccard coefficient of 0.56, a Dice coefficient of 0.72, and an F-measure of 0.72. Finally, for the LD dataset, the algorithm achieves a precision of 0.96, a recall of 0.99, and an F-measure of 0.98. The comparative results demonstrate the superiority of the proposed method over the simple Particle Swarm Optimization (PSO) algorithm, its variants (Darwinian particle swarm optimization (DPSO), fractional order Darwinian particle swarm optimization (FODPSO)), Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), non-dominated sorting genetic algorithm 2 (NSGA2), and other state-of-the-art traditional image processing methods.
组织病理学图像分析被认为是癌症等严重疾病早期诊断的金标准。计算机辅助诊断(CAD)领域的进展催生了多种用于精确分割组织病理学图像的算法。然而,群体智能在组织病理学图像分割中的应用尚较少被探索。在本研究中,我们引入了一种多级多目标粒子群优化引导的超像素算法(MMPSO-S),用于从苏木精和伊红(H&E)染色的组织病理学图像中有效检测和分割各种感兴趣区域(ROI)。我们在TNBC、MoNuSeg、MoNuSAC和LD这四个不同数据集上进行了多项实验,以确定所提算法的性能。对于TNBC数据集,该算法的杰卡德系数为0.49,骰子系数为0.65,F值为0.65。对于MoNuSeg数据集,该算法的杰卡德系数为0.56,骰子系数为0.72,F值为0.72。最后,对于LD数据集,该算法的精度为0.96,召回率为0.99,F值为0.98。比较结果表明,所提方法优于简单粒子群优化(PSO)算法、其变体(达尔文粒子群优化(DPSO)、分数阶达尔文粒子群优化(FODPSO))、基于分解的多目标进化算法(MOEA/D)、非支配排序遗传算法2(NSGA2)以及其他先进的传统图像处理方法。