Suppr超能文献

粒子群优化和沙蚕群算法在糖尿病视网膜血管图像分割中的应用。

Particle Swarm Optimization and Salp Swarm Algorithm for the Segmentation of Diabetic Retinal Blood Vessel Images.

机构信息

Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, School of Automation, Harbin University of Science and Technology, Harbin 150080, China.

Key Laboratory of Advanced Manufacturing and Intelligent Technology Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China.

出版信息

Comput Intell Neurosci. 2022 Aug 23;2022:1936482. doi: 10.1155/2022/1936482. eCollection 2022.

Abstract

In recent years, the incidence of diabetes has been increasing year by year. Since most of the fundus lesions are located near blood vessels, the image information is complex, and the end vessels are difficult to identify. So, a new segmentation method of diabetic retinal vessel images based on particle swarm optimization and salp swarm algorithm is proposed. This paper uses a Gaussian filter to enhance the main blood vessels, and a top-bot hat transform is used to strengthen the end vessels. The preprocessing process is completed by combining and reconstructing the two images through a normalization operation. The improved particle swarm optimization and salp swarm algorithms perform multi-threshold segmentation on the preprocessed vessel images. The best fit value, Structural Similarity Index Measure, Peak Signal to Noise Rati, feature similarity index measure, sensitivity, accuracy, regional consistency, Dice coefficient, Jaccard similarity, and Shannon entropy are selected for comprehensive evaluation and analysis. The results showed that this paper's improved particle swarm-salp swarm algorithm for segmenting diabetic retinal blood vessel images is more efficient, and the threshold is better. The vascular segmentation method in this paper is applied in medical image processing, which improves the accuracy of medical image processing and reduces the computational effort.

摘要

近年来,糖尿病的发病率逐年上升。由于大多数眼底病变都位于血管附近,图像信息复杂,末梢血管难以识别。因此,提出了一种基于粒子群优化和沙蚕群算法的糖尿病视网膜血管图像新的分割方法。本文采用高斯滤波器增强主血管,采用顶帽变换增强末梢血管。通过归一化操作将两幅图像进行组合和重构来完成预处理过程。改进的粒子群优化和沙蚕群算法对预处理后的血管图像进行多阈值分割。选择最佳拟合值、结构相似性指数、峰值信噪比、特征相似性指数、灵敏度、准确性、区域一致性、Dice 系数、Jaccard 相似性和香农熵进行综合评价和分析。结果表明,本文提出的改进的粒子群-沙蚕群算法在分割糖尿病视网膜血管图像方面更高效,阈值更好。本文中的血管分割方法应用于医学图像处理中,提高了医学图像处理的准确性,降低了计算量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2fc/9427232/2b976b759fc2/CIN2022-1936482.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验