Suppr超能文献

与 CMOS 兼容的添加剂 3D 光子集成。

Additive 3D photonic integration that is CMOS compatible.

机构信息

Institut FEMTO-ST, Université Franche-Comté, CNRS UMR6174, Besançon, France.

出版信息

Nanotechnology. 2023 May 24;34(32). doi: 10.1088/1361-6528/acd0b5.

Abstract

Today, continued miniaturization in electronic integrated circuits (ICs) appears to have reached its fundamental limit at ∼2 nm feature-sizes, from originally ∼1 cm. At the same time, energy consumption due to communication becomes the dominant limitation in high performance electronic ICs for computing, and modern computing concepts such neural networks further amplify the challenge. Communication based on co-integrated photonic circuits is a promising strategy to address the second. As feature size has leveled out, adding a third dimension to the predominantly two-dimensional ICs appears a promising future strategy for further IC architecture improvement. Crucial for efficient electronic-photonic co-integration is complementary metal-oxide-semiconductor (CMOS) compatibility of the associated photonic integration fabrication process. Here, we review our latest results obtained in the FEMTO-ST RENATECH facilities on using additive photo-induced polymerization of a standard photo-resin for truly three-dimensional (3D) photonic integration according to these principles. Based on one- and two-photon polymerization (TPP) and combined with direct-laser writing, we 3D-printed air- and polymer-cladded photonic waveguides. An important application of such circuits are the interconnects of optical neural networks, where 3D integration enables scalability in terms of network size versus its geometric dimensions. In particular via-TPP, a fabrication process combining blanket one- and high-resolution TPP, we demonstrated polymer-cladded step-index waveguides with up to 6 mm length, low insertion (∼0.26 dB) and propagation (∼1.3 dB mm) losses, realized broadband and low loss (∼0.06 dB splitting losses) adiabatic 1 to M couplers as well as tightly confining air-cladded waveguides for denser integration. By stably printing such integrated photonic circuits on standard semiconductor samples, we show the concept's CMOS compatibility. With this, we lay out a promising, future avenue for scalable integration of hybrid photonic and electronic components.

摘要

如今,电子集成电路 (IC) 的持续小型化似乎已经达到了约 2nm 特征尺寸的基本极限,而最初的尺寸约为 1cm。与此同时,由于通信而导致的能量消耗成为计算用高性能电子 IC 的主要限制,而神经网络等现代计算概念进一步加剧了这一挑战。基于共集成光子电路的通信是解决第二个问题的一种很有前途的策略。随着特征尺寸趋于平稳,为进一步提高 IC 架构性能,在主要二维 IC 上增加第三个维度似乎是一种很有前途的未来策略。高效的电子-光子共集成的关键是相关光子集成制造工艺与互补金属氧化物半导体 (CMOS) 的兼容性。在这里,我们回顾了在 FEMTO-ST RENATECH 设施中使用标准光致抗蚀剂的光致聚合反应来根据这些原则进行真正的三维 (3D) 光子集成的最新研究结果。基于单光子和双光子聚合 (TPP),并结合直接激光写入,我们 3D 打印了空气和聚合物包层的光子波导。这种电路的一个重要应用是光神经网络的互连,其中 3D 集成可实现网络尺寸与其几何尺寸相比的可扩展性。特别是通过 TPP,我们演示了一种将覆盖层的单光子和高分辨率 TPP 相结合的制造工艺,该工艺制造的聚合物包层阶跃折射率波导长度可达 6mm,插入损耗 (∼0.26dB) 和传播损耗 (∼1.3dBmm) 低,实现了宽带和低损耗 (∼0.06dB 分束损耗) 的绝热 1 到 M 耦合器以及紧密约束的空气包层波导,用于更密集的集成。通过在标准半导体样品上稳定地打印这种集成光子电路,我们展示了该概念的 CMOS 兼容性。通过这种方式,我们为可扩展的混合光子和电子组件集成铺平了一条有前途的道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验