Suppr超能文献

3D 集成使硅光子学中的超低噪声无隔离器激光器成为可能。

3D integration enables ultralow-noise isolator-free lasers in silicon photonics.

机构信息

Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.

出版信息

Nature. 2023 Aug;620(7972):78-85. doi: 10.1038/s41586-023-06251-w. Epub 2023 Aug 2.

Abstract

Photonic integrated circuits are widely used in applications such as telecommunications and data-centre interconnects. However, in optical systems such as microwave synthesizers, optical gyroscopes and atomic clocks, photonic integrated circuits are still considered inferior solutions despite their advantages in size, weight, power consumption and cost. Such high-precision and highly coherent applications favour ultralow-noise laser sources to be integrated with other photonic components in a compact and robustly aligned format-that is, on a single chip-for photonic integrated circuits to replace bulk optics and fibres. There are two major issues preventing the realization of such envisioned photonic integrated circuits: the high phase noise of semiconductor lasers and the difficulty of integrating optical isolators directly on-chip. Here we challenge this convention by leveraging three-dimensional integration that results in ultralow-noise lasers with isolator-free operation for silicon photonics. Through multiple monolithic and heterogeneous processing sequences, direct on-chip integration of III-V gain medium and ultralow-loss silicon nitride waveguides with optical loss around 0.5 decibels per metre are demonstrated. Consequently, the demonstrated photonic integrated circuit enters a regime that gives rise to ultralow-noise lasers and microwave synthesizers without the need for optical isolators, owing to the ultrahigh-quality-factor cavity. Such photonic integrated circuits also offer superior scalability for complex functionalities and volume production, as well as improved stability and reliability over time. The three-dimensional integration on ultralow-loss photonic integrated circuits thus marks a critical step towards complex systems and networks on silicon.

摘要

光子集成电路广泛应用于电信和数据中心互连等领域。然而,在微波合成器、光学陀螺仪和原子钟等光系统中,尽管光子集成电路在尺寸、重量、功耗和成本方面具有优势,但仍被认为是较差的解决方案。这种高精度和高相干性的应用需要超低噪声激光源与其他光子组件集成在一个紧凑且稳定对准的格式中,即在单个芯片上,以取代大块光学器件和光纤。有两个主要问题阻碍了这种预期的光子集成电路的实现:半导体激光器的高相位噪声和直接在芯片上集成光隔离器的困难。在这里,我们通过利用三维集成来挑战这一传统观念,从而实现了具有隔离器的超低噪声激光器,用于硅光子学。通过多次单片和异质处理序列,实现了 III-V 增益介质和超低损耗硅氮化物波导的直接芯片内集成,光学损耗约为每米 0.5 分贝。因此,由于超高品质因数腔,所展示的光子集成电路进入了一个无需光隔离器即可产生超低噪声激光器和微波合成器的区域。这种光子集成电路还为复杂功能和批量生产提供了更好的可扩展性,以及随着时间的推移提高了稳定性和可靠性。因此,超低损耗光子集成电路上的三维集成标志着迈向硅基复杂系统和网络的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9326/10396957/5edb821cea6f/41586_2023_6251_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验