Suppr超能文献

POLG 基因型影响 iPSC 衍生神经祖细胞中线粒体功能障碍的程度,但不影响亲本 iPSC 或衍生的神经胶质细胞。

POLG genotype influences degree of mitochondrial dysfunction in iPSC derived neural progenitors, but not the parent iPSC or derived glia.

机构信息

Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway; Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway.

Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway; Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.

出版信息

Exp Neurol. 2023 Jul;365:114429. doi: 10.1016/j.expneurol.2023.114429. Epub 2023 Apr 25.

Abstract

Diseases caused by POLG mutations are the most common form of mitochondrial diseases and associated with phenotypes of varying severity. Clinical studies have shown that patients with compound heterozygous POLG mutations have a lower survival rate than patients with homozygous mutations, but the molecular mechanisms behind this remain unexplored. Using an induced pluripotent stem cell (iPSC) model, we investigate differences between homozygous and compound heterozygous genotypes in different cell types, including patient-specific fibroblasts, iPSCs, and iPSC-derived neural stem cells (NSCs) and astrocytes. We found that compound heterozygous lines exhibited greater impairment of mitochondrial function in NSCs than homozygous NSCs, but not in fibroblasts, iPSCs, or astrocytes. Compared with homozygous NSCs, compound heterozygous NSCs exhibited more severe functional defects, including reduced ATP production, loss of mitochondrial DNA (mtDNA) copy number and complex I expression, disturbance of NAD metabolism, and higher ROS levels, which further led to cellular senescence and activation of mitophagy. RNA sequencing analysis revealed greater downregulation of mitochondrial and metabolic pathways, including the citric acid cycle and oxidative phosphorylation, in compound heterozygous NSCs. Our iPSC-based disease model can be widely used to understand the genotype-phenotype relationship of affected brain cells in mitochondrial diseases, and further drug discovery applications.

摘要

由 POLG 基因突变引起的疾病是最常见的线粒体疾病形式,与不同严重程度的表型相关。临床研究表明,复合杂合 POLG 基因突变的患者比纯合突变的患者生存率更低,但背后的分子机制仍未被探索。我们使用诱导多能干细胞(iPSC)模型,研究了不同细胞类型中纯合和复合杂合基因型之间的差异,包括患者特异性成纤维细胞、iPSC 以及 iPSC 衍生的神经干细胞(NSC)和星形胶质细胞。我们发现,与纯合 NSCs 相比,复合杂合 NSCs 中线粒体功能的损伤更大,但在成纤维细胞、iPSC 或星形胶质细胞中则没有。与纯合 NSCs 相比,复合杂合 NSCs 表现出更严重的功能缺陷,包括减少 ATP 生成、线粒体 DNA(mtDNA)拷贝数和复合物 I 表达的丧失、NAD 代谢紊乱以及更高的 ROS 水平,这进一步导致细胞衰老和自噬的激活。RNA 测序分析显示,复合杂合 NSCs 中线粒体和代谢途径,包括柠檬酸循环和氧化磷酸化,的下调更为明显。我们的基于 iPSC 的疾病模型可以广泛用于理解线粒体疾病中受影响脑细胞的基因型-表型关系,以及进一步的药物发现应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验