Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway.
Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway.
Exp Neurol. 2021 Mar;337:113536. doi: 10.1016/j.expneurol.2020.113536. Epub 2020 Nov 29.
The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.
线粒体 DNA 聚合酶 γ(POLG)无法可靠复制线粒体 DNA(mtDNA),导致与神经元死亡和神经元 mtDNA 耗竭相关的一组常见线粒体疾病。由于人类组织的获取有限,因此仍然难以定义神经元中的疾病机制。我们使用人诱导多能干细胞(hiPSC)生成了功能性多巴胺能(DA)神经元,这些神经元表现出多巴胺标志物 TH 和 DAT 的阳性表达、成熟神经元标志物 MAP2 和功能性突触标志物 synaptophysin 和 PSD-95。这些 DA 神经元进行了电生理特性分析,表现出内向 Na+电流、超射动作电位和自发性突触后电流(sPSCs)。POLG 患者特异性 DA 神经元(POLG-DA 神经元)表现出与患者死后大脑样本中发现的分子和生化变化相吻合的表型,即复合物 I 丧失和 mtDNA 耗竭。与无疾病 hiPSC 衍生的 DA 神经元相比,POLG-DA 神经元表现出线粒体膜电位丧失、复合物 I 丧失和 mtDNA 和 TFAM 表达丧失。POLG 驱动的线粒体功能障碍还导致神经元 ROS 过度产生和细胞衰老增加。这种缺陷可以通过用 N-乙酰半胱氨酸酰胺(NACA)治疗来选择性挽救。总之,我们的研究说明了 hiPSC 技术在评估与 POLG 疾病相关的发病机制方面的潜力,并且 NACA 可能是治疗由 POLG 突变引起的线粒体疾病的一种有前途的潜在疗法。