Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway.
Department of Clinical Medicine, University of Bergen, Bergen, Norway.
EMBO Mol Med. 2020 Oct 7;12(10):e12146. doi: 10.15252/emmm.202012146. Epub 2020 Aug 25.
Mutations in POLG disrupt mtDNA replication and cause devastating diseases often with neurological phenotypes. Defining disease mechanisms has been hampered by limited access to human tissues, particularly neurons. Using patient cells carrying POLG mutations, we generated iPSCs and then neural stem cells. These neural precursors manifested a phenotype that faithfully replicated the molecular and biochemical changes found in patient post-mortem brain tissue. We confirmed the same loss of mtDNA and complex I in dopaminergic neurons generated from the same stem cells. POLG-driven mitochondrial dysfunction led to neuronal ROS overproduction and increased cellular senescence. Loss of complex I was associated with disturbed NAD metabolism with increased UCP2 expression and reduced phosphorylated SirT1. In cells with compound heterozygous POLG mutations, we also found activated mitophagy via the BNIP3 pathway. Our studies are the first that show it is possible to recapitulate the neuronal molecular and biochemical defects associated with POLG mutation in a human stem cell model. Further, our data provide insight into how mitochondrial dysfunction and mtDNA alterations influence cellular fate determining processes.
POLG 基因突变会破坏 mtDNA 复制,导致破坏性疾病,通常伴有神经表型。由于获取人类组织(尤其是神经元)的途径有限,因此定义疾病机制受到了阻碍。我们使用携带 POLG 突变的患者细胞生成了 iPSC,然后是神经干细胞。这些神经前体细胞表现出一种表型,忠实地复制了在患者死后脑组织中发现的分子和生化变化。我们证实了从相同的干细胞生成的多巴胺能神经元中也存在相同的 mtDNA 和复合物 I 的丢失。POLG 驱动的线粒体功能障碍导致神经元 ROS 过度产生和细胞衰老增加。复合物 I 的缺失与 NAD 代谢紊乱有关,表现为 UCP2 表达增加和磷酸化 SirT1 减少。在具有复合杂合 POLG 突变的细胞中,我们还通过 BNIP3 途径发现了激活的线粒体自噬。我们的研究首次表明,在人类干细胞模型中重现与 POLG 突变相关的神经元分子和生化缺陷是可能的。此外,我们的数据提供了有关线粒体功能障碍和 mtDNA 改变如何影响细胞命运决定过程的见解。