Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
Research Center of Neurology, Ono Pharmaceutical Co., Ltd., Osaka 618-8585, Japan.
Int J Mol Sci. 2023 Apr 10;24(8):6987. doi: 10.3390/ijms24086987.
Amyotrophic lateral sclerosis (ALS) is a major life-threatening disease caused by motor neuron degeneration. More effective treatments through drug discovery are urgently needed. Here, we established an effective high-throughput screening system using induced pluripotent stem cells (iPSCs). Using a Tet-On-dependent transcription factor expression system carried on the vector, motor neurons were efficiently and rapidly generated from iPSCs by a single-step induction method. Induced iPSC transcripts displayed characteristics similar to those of spinal cord neurons. iPSC-generated motor neurons carried a mutation in () and () genes and had abnormal protein accumulation corresponding to each mutation. Calcium imaging and multiple electrode array (MEA) recordings demonstrated that ALS neurons were abnormally hyperexcitable. Noticeably, protein accumulation and hyperexcitability were ameliorated by treatment with rapamycin (mTOR inhibitor) and retigabine (Kv7 channel activator), respectively. Furthermore, rapamycin suppressed ALS neuronal death and hyperexcitability, suggesting that protein aggregate clearance through the activation of autophagy effectively normalized activity and improved neuronal survival. Our culture system reproduced several ALS phenotypes, including protein accumulation, hyperexcitability, and neuronal death. This rapid and robust phenotypic screening system will likely facilitate the discovery of novel ALS therapeutics and stratified and personalized medicine for sporadic motor neuron diseases.
肌萎缩侧索硬化症(ALS)是一种由运动神经元变性引起的危及生命的重大疾病。迫切需要通过药物发现来提供更有效的治疗方法。在这里,我们使用诱导多能干细胞(iPSC)建立了一种有效的高通量筛选系统。使用载有 Tet-On 依赖性转录因子表达系统的 载体,通过一步诱导方法,iPSC 可高效快速地生成运动神经元。诱导的 iPSC 转录物显示出与脊髓神经元相似的特征。iPSC 生成的运动神经元携带 ()和 ()基因的突变,并且每种突变都有异常的蛋白积累。钙成像和多电极阵列(MEA)记录表明,ALS 神经元异常过度兴奋。值得注意的是,雷帕霉素(mTOR 抑制剂)和 retigabine(Kv7 通道激活剂)的治疗分别改善了蛋白积累和过度兴奋。此外,雷帕霉素抑制 ALS 神经元死亡和过度兴奋,表明通过自噬的激活清除蛋白聚集体可有效调节活性并改善神经元存活。我们的培养系统再现了几种 ALS 表型,包括蛋白积累、过度兴奋和神经元死亡。这种快速而强大的表型筛选系统可能有助于发现新的 ALS 治疗方法以及散发性运动神经元疾病的分层和个体化治疗。