Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.
Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan.
Cells. 2021 Oct 16;10(10):2773. doi: 10.3390/cells10102773.
Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients' MNs, mutant and corrected isogenic-induced pluripotent stem cell (iPSC) lines were established. Two mutant ALS ( and ), two mutant corrected ( and ), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to ALS MNs in a previous study. Moreover, we found that both mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of , showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to ALS MNs but also to sporadic ALS MNs and ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in ALS MNs. Interestingly, the therapeutic role of GSK3β activation on ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy.
肌萎缩侧索硬化症(ALS)是一种进行性神经系统疾病,导致运动神经元(MN)变性,患者在几年内死亡。为了重现 ALS 患者 MN 的细胞病理学,建立了突变和纠正的同源诱导多能干细胞(iPSC)系。将两条突变 ALS(和)、两条突变纠正(和)和一条散发性 ALS iPSC 系定向为 MN。在获得 MN 纯度约为 90%后,我们首先证明了突变 ALS MN 重现了 ALS 特异性神经纤维聚集体,类似于之前研究中的 ALS MN。此外,我们发现两条突变 MN 均表现出 ALS 特异性神经突退行性变和神经递质诱导的钙超敏反应。在使用这些 MN 的小化合物测试中,我们证明了天麻素,一种的主要成分,表现出治疗效果,可减少神经纤维细胞病变并逆转神经递质诱导的高反应性。天麻素的治疗效果不仅适用于 ALS MN,也适用于散发性 ALS MN 和 ALS 小鼠。此外,我们发现 GSK3β 和 IGF-1 途径的共激活是天麻素治疗效果的一种机制。因此,协调激活这两种机制的化合物可以减少 ALS MN 中的神经纤维细胞病变。有趣的是,本研究中 GSK3β 激活对 ALS MN 的治疗作用与以前使用细胞系或转基因动物模型的研究中报道的作用相反。总之,我们在 MN 中鉴定了体外 ALS 特异性神经纤维和神经功能标记物,这将有助于药物筛选,并且我们使用基于 iPSC 的模型揭示了新的治疗机制(包括 GSK3β 和 IGF-1 激活),这些机制可能成为 ALS 治疗的潜在靶点。