文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SAA1 有望成为与细胞增殖、迁移相关的预后生物标志物,以及透明细胞肾细胞癌肿瘤微环境免疫浸润的指标。

SAA1 Has Potential as a Prognostic Biomarker Correlated with Cell Proliferation, Migration, and an Indicator for Immune Infiltration of Tumor Microenvironment in Clear Cell Renal Cell Carcinoma.

机构信息

Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 310009, China.

Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China.

出版信息

Int J Mol Sci. 2023 Apr 19;24(8):7505. doi: 10.3390/ijms24087505.


DOI:10.3390/ijms24087505
PMID:37108666
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10138873/
Abstract

The tumor microenvironment (TME) plays an important part in the initiation and development of clear cell renal cell carcinoma (ccRCC). However, an understanding of the immune infiltration in TME is still unknown. Our study aims to explore the correlation between the TME and the clinical features, as well as the prognosis of ccRCC. In the present study, ESTIMATE and CIBERSORT computational methods were applied to calculate the proportion of tumor-infiltrating immune cells (TICs) and the amount of immune and stromal fractions in the ccRCC form The Cancer Genome Atlas (TCGA) database. Then, we sought to find out those immune cell types and genes which may play a significant role and validated them in the GEO database. Furthermore, an immunohistochemical analysis of our external validation dataset was used to detect SAA1 and PDL1 expression in the ccRCC cancer tissues and corresponding normal tissues. Statistical analysis was performed to study the relationship between SAA1 and clinical characteristics, as well as PDL1 expression. Furthermore, a ccRCC cell model with SAA1 knockdown was constructed, which was used for cell proliferation and the migration test. The intersection analysis of the univariate COX and PPI analysis were performed to imply Serum Amyloid A1 (SAA1) as a predictive factor. The expression of SAA1 was significantly negatively correlated to OS and positively correlated to the clinical TMN stage system. The genes in the high-expression SAA1 group were basically enriched in immune-related activities. The proportion of mast cells resting was negatively correlated with SAA1 expression, indicating that SAA1 may be involved in the maintenance of the immune status for the TME. Moreover, the PDL1 expression was positively related to the SAA1 expression and negatively correlated with the patients' prognosis. Further experiments revealed that the knockdown of SAA1 inhibited ccRCC development through suppressing cell proliferation and migration. SAA1 may be a novel marker for the prognosis prediction of ccRCC patients and may play a vital role in the TME by mast cell resting and PDL1 expression. SAA1 has the potential to become a therapeutic target and indicator for immune target therapy in ccRCC treatment.

摘要

肿瘤微环境(TME)在透明细胞肾细胞癌(ccRCC)的发生和发展中起着重要作用。然而,人们对 TME 中的免疫浸润仍知之甚少。本研究旨在探讨 TME 与 ccRCC 的临床特征和预后之间的相关性。在本研究中,应用 ESTIMATE 和 CIBERSORT 计算方法从癌症基因组图谱(TCGA)数据库中计算 ccRCC 中肿瘤浸润免疫细胞(TIC)的比例和免疫及基质分数的量。然后,我们试图在 GEO 数据库中找到可能发挥重要作用的免疫细胞类型和基因,并对其进行验证。此外,我们还对外部验证数据集进行了免疫组织化学分析,以检测 ccRCC 癌组织和相应正常组织中 SAA1 和 PDL1 的表达。统计学分析用于研究 SAA1 与临床特征的关系以及 PDL1 的表达。此外,构建了 SAA1 敲低的 ccRCC 细胞模型,用于细胞增殖和迁移试验。通过单变量 COX 和 PPI 分析的交集分析表明,血清淀粉样蛋白 A1(SAA1)是一个预测因子。SAA1 的表达与 OS 显著负相关,与临床 TMN 分期系统呈正相关。高表达 SAA1 组的基因基本富集在免疫相关活性中。静止肥大细胞的比例与 SAA1 表达呈负相关,表明 SAA1 可能参与维持 TME 的免疫状态。此外,PDL1 的表达与 SAA1 的表达呈正相关,与患者的预后呈负相关。进一步的实验表明,SAA1 的敲低通过抑制 ccRCC 的发展来抑制 ccRCC 的发展。SAA1 可能是 ccRCC 患者预后预测的新标志物,通过静止肥大细胞和 PDL1 表达在 TME 中发挥重要作用。SAA1 有可能成为 ccRCC 治疗中免疫靶向治疗的治疗靶点和标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/3fee0ae80702/ijms-24-07505-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/759521936687/ijms-24-07505-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/7f3a237c2e33/ijms-24-07505-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/d092ee744707/ijms-24-07505-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/8a700c78bb60/ijms-24-07505-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/ff86c6eaf957/ijms-24-07505-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/5befb79d2ca8/ijms-24-07505-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/1f9365a4a83b/ijms-24-07505-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/7f4d6c13b869/ijms-24-07505-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/3fee0ae80702/ijms-24-07505-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/759521936687/ijms-24-07505-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/7f3a237c2e33/ijms-24-07505-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/d092ee744707/ijms-24-07505-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/8a700c78bb60/ijms-24-07505-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/ff86c6eaf957/ijms-24-07505-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/5befb79d2ca8/ijms-24-07505-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/1f9365a4a83b/ijms-24-07505-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/7f4d6c13b869/ijms-24-07505-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc6/10138873/3fee0ae80702/ijms-24-07505-g009.jpg

相似文献

[1]
SAA1 Has Potential as a Prognostic Biomarker Correlated with Cell Proliferation, Migration, and an Indicator for Immune Infiltration of Tumor Microenvironment in Clear Cell Renal Cell Carcinoma.

Int J Mol Sci. 2023-4-19

[2]
SAA1 Expression as a Potential Prognostic Marker of the Tumor Microenvironment in Glioblastoma.

Front Neurol. 2022-6-10

[3]
Comprehensive insights on pivotal prognostic signature involved in clear cell renal cell carcinoma microenvironment using the ESTIMATE algorithm.

Cancer Med. 2020-6

[4]
POLD1 as a Prognostic Biomarker Correlated with Cell Proliferation and Immune Infiltration in Clear Cell Renal Cell Carcinoma.

Int J Mol Sci. 2023-4-6

[5]
Identification and verification of a novel anoikis-related gene signature with prognostic significance in clear cell renal cell carcinoma.

J Cancer Res Clin Oncol. 2023-10

[6]
Microenvironment-associated gene HSD11B1 may serve as a prognostic biomarker in clear cell renal cell carcinoma: a study based on TCGA, RT‑qPCR, Western blotting, and immunohistochemistry.

Bioengineered. 2021-12

[7]
A novel necroptosis-related long noncoding RNA model for predicting clinical features, immune characteristics, and therapeutic response in clear cell renal cell carcinoma.

Front Immunol. 2023

[8]
Computational construction of TME-related lncRNAs signature for predicting prognosis and immunotherapy response in clear cell renal cell carcinoma.

J Clin Lab Anal. 2022-8

[9]
Identification of HDAC10 as a candidate oncogene in clear cell renal carcinoma that facilitates tumor proliferation and metastasis.

Diagn Pathol. 2024-9-5

[10]
DDX39 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in patients with clear cell renal cell carcinoma.

Int J Biol Sci. 2021

引用本文的文献

[1]
Interferon Regulatory Factor 4 Recruits Immature B Cells to Signal Tertiary Lymphoid Structure Immaturity and Progression of Clear Cell Renal Cell Carcinoma.

Int J Biol Sci. 2025-6-9

[2]
Development and validation of prognostic and diagnostic models utilizing immune checkpoint-related genes in public datasets for clear cell renal cell carcinoma.

Front Genet. 2025-3-4

[3]
Identification of hub programmed cell death-related genes and immune infiltration in Crohn's disease using bioinformatics.

Front Genet. 2024-12-18

[4]
Transcriptome analysis revealed a novel nine-gene prognostic risk score of clear cell renal cell carcinoma.

Medicine (Baltimore). 2024-9-27

[5]
Comprehensive investigation of malignant epithelial cell-related genes in clear cell renal cell carcinoma: development of a prognostic signature and exploration of tumor microenvironment interactions.

J Transl Med. 2024-7-1

[6]
MMPs-related risk model identification and SAA1 promotes clear cell renal cell carcinoma migration via ERK-AP1-MMPs axis.

Sci Rep. 2024-4-24

本文引用的文献

[1]
PROTAC targeted protein degraders: the past is prologue.

Nat Rev Drug Discov. 2022-3

[2]
Integrative Analysis of Immune-Related Genes in the Tumor Microenvironment of Renal Clear Cell Carcinoma and Renal Papillary Cell Carcinoma.

Front Mol Biosci. 2021-11-23

[3]
Characterizing the tumor microenvironment in rare renal cancer histological types.

J Pathol Clin Res. 2022-1

[4]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[5]
Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial.

Nat Med. 2020-11

[6]
Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer.

Theranostics. 2020

[7]
Synergies of Antiangiogenic Therapy and Immune Checkpoint Blockade in Renal Cell Carcinoma: From Theoretical Background to Clinical Reality.

Front Oncol. 2020-7-29

[8]
Activity of cabozantinib after immune checkpoint blockade in metastatic clear-cell renal cell carcinoma.

Eur J Cancer. 2020-6-27

[9]
Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy.

J Hematol Oncol. 2020-5-13

[10]
HHLA2 and PD-L1 co-expression predicts poor prognosis in patients with clear cell renal cell carcinoma.

J Immunother Cancer. 2020-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索