Eickhoff Ralf, Antusch Steffen, Nötzel Dorit, Hanemann Thomas
Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
Department of Microsystems Engineering, University Freiburg, Georges-Koehler-Allee 102, D-79110 Freiburg, Germany.
Materials (Basel). 2023 Apr 17;16(8):3162. doi: 10.3390/ma16083162.
In this work, a process chain for the realization of dense Ti6Al4V parts via different material extrusion methods will be introduced applying eco-friendly partially water-soluble binder systems. In continuation of earlier research, polyethylene glycol (PEG) as a low molecular weight binder component was combined either with poly(vinylbutyral) (PVB) or with poly(methylmethacrylat) (PMMA) as a high molecular weight polymer and investigated with respect to their usability in FFF and FFD. The additional investigation of different surfactants' impact on the rheological behaviour applying shear and oscillation rheology allowed for a final solid Ti6Al4V content of 60 vol%, which is sufficient to achieve after printing, debinding and thermal densification parts with densities better than 99% of the theoretical value. The requirements for usage in medical applications according to ASTM F2885-17 can be fulfilled depending on the processing conditions.
在这项工作中,将介绍一种通过不同的材料挤出方法来制造致密Ti6Al4V零件的工艺链,该工艺链采用环保型部分水溶性粘结剂体系。延续早期研究,将聚乙二醇(PEG)作为低分子量粘结剂成分与作为高分子量聚合物的聚乙烯醇缩丁醛(PVB)或聚甲基丙烯酸甲酯(PMMA)相结合,并研究它们在熔融沉积成型(FFF)和熔丝沉积(FFD)中的可用性。通过应用剪切流变学和振荡流变学对不同表面活性剂对流变行为的影响进行的额外研究,使得最终的Ti6Al4V固相含量达到60体积%,这足以在打印、脱脂和热致密化后获得密度优于理论值99%的零件。根据加工条件,可以满足ASTM F2885-17中对医疗应用使用的要求。