Suppr超能文献

基于黑磷纳米载体的小分子抗病毒药物协同作用:机器学习和量子化学模拟的见解。

Synergy of Small Antiviral Molecules on a Black-Phosphorus Nanocarrier: Machine Learning and Quantum Chemical Simulation Insights.

机构信息

Computational Bioscience Research Center (CBRC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

A Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

出版信息

Molecules. 2023 Apr 17;28(8):3521. doi: 10.3390/molecules28083521.

Abstract

Favipiravir (FP) and Ebselen (EB) belong to a broad range of antiviral drugs that have shown active potential as medications against many viruses. Employing molecular dynamics simulations and machine learning (ML) combined with van der Waals density functional theory, we have uncovered the binding characteristics of these two antiviral drugs on a phosphorene nanocarrier. Herein, by using four different machine learning models (i.e., Bagged Trees, Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Regression Trees (RT)), the Hamiltonian and the interaction energy of antiviral molecules in a phosphorene monolayer are trained in an appropriate way. However, training efficient and accurate models for approximating the density functional theory (DFT) is the final step in using ML to aid in the design of new drugs. To improve the prediction accuracy, the Bayesian optimization approach has been employed to optimize the GPR, SVR, RT, and BT models. Results revealed that the GPR model obtained superior prediction performance with an R2 of 0.9649, indicating that it can explain 96.49% of the data's variability. Then, by means of DFT calculations, we examine the interaction characteristics and thermodynamic properties in a vacuum and a continuum solvent interface. These results illustrate that the hybrid drug is an enabled, functionalized 2D complex with vigorous thermostability. The change in Gibbs free energy at different surface charges and temperatures implies that the FP and EB molecules are allowed to adsorb from the gas phase onto the 2D monolayer at different pH conditions and high temperatures. The results reveal a valuable antiviral drug therapy loaded by 2D biomaterials that may possibly open a new way of auto-treating different diseases, such as SARS-CoV, in primary terms.

摘要

珐匹拉韦(FP)和依布硒啉(EB)属于广谱抗病毒药物,它们在对抗多种病毒方面表现出了积极的潜力。我们采用分子动力学模拟和机器学习(ML)相结合的方法,并结合范德华密度泛函理论,研究了这两种抗病毒药物在黑磷纳米载体上的结合特性。在此,我们使用了四种不同的机器学习模型(即袋装树、高斯过程回归(GPR)、支持向量回归(SVR)和回归树(RT)),以适当的方式训练了在黑磷单层中抗病毒分子的哈密顿量和相互作用能。然而,训练高效准确的模型来近似密度泛函理论(DFT)是使用 ML 来辅助设计新药的最后一步。为了提高预测精度,我们采用了贝叶斯优化方法来优化 GPR、SVR、RT 和 BT 模型。结果表明,GPR 模型获得了优异的预测性能,R2 值为 0.9649,表明它可以解释 96.49%的数据变异性。然后,我们通过 DFT 计算,在真空和连续溶剂界面中研究了相互作用特性和热力学性质。这些结果表明,杂化药物是一种功能化的 2D 配合物,具有强烈的热稳定性。在不同表面电荷和温度下吉布斯自由能的变化表明,FP 和 EB 分子可以从气相中吸附到不同 pH 值和高温条件下的 2D 单层上。研究结果揭示了一种由 2D 生物材料负载的有价值的抗病毒药物治疗方法,这可能为治疗 SARS-CoV 等不同疾病开辟了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72a9/10142408/ee7cfda92035/molecules-28-03521-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验