Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Int J Mol Sci. 2024 Apr 30;25(9):4897. doi: 10.3390/ijms25094897.
Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.
法匹拉韦(FP)和依布硒啉(EB)属于一类具有不同结构的抗病毒药物,它们在治疗各种病毒感染方面具有显著的疗效。本研究采用分子动力学(MD)模拟、机器学习和范德华密度泛函理论,准确地阐明了这些抗病毒药物在单层黑磷上的结合特性。为了进一步研究这些特性,本研究采用了四种不同的机器学习模型——随机森林、梯度提升、XGBoost 和 CatBoost。对黑磷单层中抗病毒分子的哈密顿量进行了适当的训练。在药物设计中利用机器学习(ML)的关键在于训练高效且精确地近似密度泛函理论(DFT)的模型。此外,本研究还采用 SHAP(SHapley Additive exPlanations)来阐明模型预测,深入了解每个特征的贡献。为了探究杂化药物的相互作用特性和热力学性质,我们在真空界面上采用分子动力学和密度泛函理论计算。我们的研究结果表明,这种功能化的 2D 复合物表现出较强的热稳定性,表明其具有作为有效且可行实体的潜力。不同表面电荷和温度下自由能的变化表明 FP 和 EB 分子从周围环境中的吸附潜力。