文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

白腐菌和褐腐菌对木材生物质预处理的真菌选择性及生物降解作用

Fungal Selectivity and Biodegradation Effects by White and Brown Rot Fungi for Wood Biomass Pretreatment.

作者信息

Qi Jiyun, Li Fangfang, Jia Lu, Zhang Xiaoyuan, Deng Shuduan, Luo Bei, Zhou Yonghui, Fan Mizi, Xia Yan

机构信息

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.

College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK.

出版信息

Polymers (Basel). 2023 Apr 20;15(8):1957. doi: 10.3390/polym15081957.


DOI:10.3390/polym15081957
PMID:37112109
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10144154/
Abstract

The biodegradation path and mechanism of wood varies depending on diverse fungi and tree species, as fungi possess selectivity in degradation of versatile wood components. This paper aims to clarify the actual and precise selectivity of white and brown rot fungi and the biodegradation effects on different tree species. Softwood ( and ) and hardwood ( and ) were subjected to a biopretreating process by white rot fungus , and brown rot fungi and with various conversion periods. The results showed that the white rot fungus had a selective biodegradation in softwood, which preferentially convert wood hemicellulose and lignin, but cellulose was retained selectively. Conversely, achieved simultaneous conversion of cellulose, hemicellulose and lignin in hardwood. Both brown rot fungi species preferentially converted carbohydrates, but had a selectivity for the conversion of cellulose. In addition, morphological observation showed that the microstructures within wood changed significantly, and the enlarged pores and the improved accessibility could be beneficial for the penetration and accessibility of treating substrates. The research outcomes could serve as fundamental knowhows and offer potentials for effective bioenergy production and bioengineering of bioresources, and provide a reference for further application of fungal biotechnology.

摘要

木材的生物降解途径和机制因真菌种类和树木种类的不同而有所差异,因为真菌在降解多种木材成分时具有选择性。本文旨在阐明白腐菌和褐腐菌的实际和精确选择性以及对不同树木种类的生物降解效果。针叶木(和)和阔叶木(和)在不同转化期接受白腐菌、褐腐菌和的生物预处理过程。结果表明,白腐菌对针叶木有选择性生物降解,优先转化木材半纤维素和木质素,但纤维素被选择性保留。相反,在阔叶木中实现了纤维素、半纤维素和木质素的同时转化。两种褐腐菌都优先转化碳水化合物,但对纤维素的转化具有选择性。此外,形态学观察表明木材内部微观结构发生显著变化,扩大的孔隙和改善的可及性有利于处理底物的渗透和可及性。研究结果可为有效的生物能源生产和生物资源生物工程提供基础知识和潜力,并为真菌生物技术的进一步应用提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/88eacd59f023/polymers-15-01957-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/5446d027c905/polymers-15-01957-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/f8f0c2e2c957/polymers-15-01957-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/b3f8c91b336b/polymers-15-01957-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/d0002a84a642/polymers-15-01957-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/1111f792e83b/polymers-15-01957-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/796ec08f2b10/polymers-15-01957-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/88eacd59f023/polymers-15-01957-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/5446d027c905/polymers-15-01957-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/f8f0c2e2c957/polymers-15-01957-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/b3f8c91b336b/polymers-15-01957-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/d0002a84a642/polymers-15-01957-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/1111f792e83b/polymers-15-01957-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/796ec08f2b10/polymers-15-01957-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d248/10144154/88eacd59f023/polymers-15-01957-g007.jpg

相似文献

[1]
Fungal Selectivity and Biodegradation Effects by White and Brown Rot Fungi for Wood Biomass Pretreatment.

Polymers (Basel). 2023-4-20

[2]
A Laccase Gene Reporting System That Enables Genetic Manipulations in a Brown Rot Wood Decomposer Fungus .

Microbiol Spectr. 2023-2-14

[3]
Metabolomics Highlights Different Life History Strategies of White and Brown Rot Wood-Degrading Fungi.

mSphere. 2022-12-21

[4]
Effect of biodegradation on thermogravimetric and chemical characteristics of hardwood and softwood by brown-rot fungus.

Bioresour Technol. 2016-3-24

[5]
Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi.

Appl Environ Microbiol. 2018-8-1

[6]
A Fungal Secretome Adapted for Stress Enabled a Radical Wood Decay Mechanism.

mBio. 2021-8-31

[7]
Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi.

Appl Environ Microbiol. 2017-3-17

[8]
Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis.

Enzyme Microb Technol. 2011-8-26

[9]
Enhanced Lignocellulolytic Enzyme Activities on Hardwood and Softwood during Interspecific Interactions of White- and Brown-Rot Fungi.

J Fungi (Basel). 2021-3-31

[10]
Effect of Secondary Metabolites on the Growth of Brown-Rot () and White-Rot () Fungi.

Mycobiology. 2019-11-21

引用本文的文献

[1]
Development and Characterization of Mycelium-Based Composite Using Agro-Industrial Waste and as Insulating Material.

J Fungi (Basel). 2025-6-17

[2]
Transcriptome response of the white-rot fungus Trametes versicolor to hybrid poplar exhibiting unique lignin chemistry.

Fungal Biol Biotechnol. 2025-3-5

[3]
Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes.

Front Fungal Biol. 2024-12-19

[4]
Optimizing fungal treatment of lignocellulosic agro-industrial by-products to enhance their nutritional value.

Food Sci Nutr. 2024-4-8

本文引用的文献

[1]
Chemical and Enzymatic Fiber Modification to Enhance the Mechanical Properties of CMC Composite Films.

Polymers (Basel). 2022-10-2

[2]
L., an Autochthonous Species of Spain: A Source for Cellulose Nanofibers by Chemical Pretreatment.

Polymers (Basel). 2021-12-25

[3]
Enhancement of Hydrotropic Fractionation of Poplar Wood using Autohydrolysis and Disk Refining Pretreatment: Morphology and Overall Chemical Characterization.

Polymers (Basel). 2019-4-15

[4]
Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood.

Int J Biol Macromol. 2017-12-21

[5]
Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi.

Biotechnol Biofuels. 2017-7-11

[6]
Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification.

Biotechnol Biofuels. 2016-5-23

[7]
Combination of ensiling and fungal delignification as effective wheat straw pretreatment.

Biotechnol Biofuels. 2016-1-22

[8]
Plant-polysaccharide-degrading enzymes from Basidiomycetes.

Microbiol Mol Biol Rev. 2014-12

[9]
Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment.

Biotechnol Biofuels. 2013-8-10

[10]
Reduction of hexavalent chromium using naturally-derived flavonoids.

Environ Sci Technol. 2012-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索