Suppr超能文献

EFFNet-CA:一种基于多尺度特征提取和通道注意力机制的高效驾驶员分神检测方法。

EFFNet-CA: An Efficient Driver Distraction Detection Based on Multiscale Features Extractions and Channel Attention Mechanism.

机构信息

Department of Computer Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.

Department of Artificial Intelligence Engineering, Chosun University, Gwangju 61452, Republic of Korea.

出版信息

Sensors (Basel). 2023 Apr 8;23(8):3835. doi: 10.3390/s23083835.

Abstract

Driver distraction is considered a main cause of road accidents, every year, thousands of people obtain serious injuries, and most of them lose their lives. In addition, a continuous increase can be found in road accidents due to driver's distractions, such as talking, drinking, and using electronic devices, among others. Similarly, several researchers have developed different traditional deep learning techniques for the efficient detection of driver activity. However, the current studies need further improvement due to the higher number of false predictions in real time. To cope with these issues, it is significant to develop an effective technique which detects driver's behavior in real time to prevent human lives and their property from being damaged. In this work, we develop a convolutional neural network (CNN)-based technique with the integration of a channel attention (CA) mechanism for efficient and effective detection of driver behavior. Moreover, we compared the proposed model with solo and integration flavors of various backbone models and CA such as VGG16, VGG16+CA, ResNet50, ResNet50+CA, Xception, Xception+CA, InceptionV3, InceptionV3+CA, and EfficientNetB0. Additionally, the proposed model obtained optimal performance in terms of evaluation metrics, for instance, accuracy, precision, recall, and F1-score using two well-known datasets such as AUC Distracted Driver (AUCD2) and State Farm Distracted Driver Detection (SFD3). The proposed model achieved 99.58% result in terms of accuracy using SFD3 while 98.97% accuracy on AUCD2 datasets.

摘要

驾驶员分心被认为是道路事故的主要原因,每年都有数千人因此受重伤,其中大多数人失去了生命。此外,由于驾驶员分心,如交谈、饮酒和使用电子设备等,道路事故的数量持续增加。同样,一些研究人员已经开发了不同的传统深度学习技术来有效检测驾驶员的活动。然而,由于实时预测的错误率较高,目前的研究需要进一步改进。为了应对这些问题,开发一种能够实时检测驾驶员行为的有效技术来防止人员伤亡和财产损失是非常重要的。在这项工作中,我们开发了一种基于卷积神经网络(CNN)的技术,并集成了通道注意力(CA)机制,用于有效和高效地检测驾驶员行为。此外,我们将所提出的模型与各种骨干模型和 CA 的单一和集成版本进行了比较,例如 VGG16、VGG16+CA、ResNet50、ResNet50+CA、Xception、Xception+CA、InceptionV3、InceptionV3+CA 和 EfficientNetB0。此外,该模型在两个著名的数据集 AUC 分心驾驶员(AUCD2)和州立农场分心驾驶员检测(SFD3)上的评估指标方面获得了最佳性能,例如准确性、精度、召回率和 F1 分数。该模型在 SFD3 数据集上的准确率达到 99.58%,在 AUCD2 数据集上的准确率达到 98.97%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef88/10145749/ec310077ed21/sensors-23-03835-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验