Suppr超能文献

E2DR:一种基于深度学习的驾驶员分神检测与推荐模型。

E2DR: A Deep Learning Ensemble-Based Driver Distraction Detection with Recommendations Model.

机构信息

Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.

出版信息

Sensors (Basel). 2022 Feb 26;22(5):1858. doi: 10.3390/s22051858.

Abstract

The increasing number of car accidents is a significant issue in current transportation systems. According to the World Health Organization (WHO), road accidents are the eighth highest top cause of death around the world. More than 80% of road accidents are caused by distracted driving, such as using a mobile phone, talking to passengers, and smoking. A lot of efforts have been made to tackle the problem of driver distraction; however, no optimal solution is provided. A practical approach to solving this problem is implementing quantitative measures for driver activities and designing a classification system that detects distracting actions. In this paper, we have implemented a portfolio of various ensemble deep learning models that have been proven to efficiently classify driver distracted actions and provide an in-car recommendation to minimize the level of distractions and increase in-car awareness for improved safety. This paper proposes E2DR, a new scalable model that uses stacking ensemble methods to combine two or more deep learning models to improve accuracy, enhance generalization, and reduce overfitting, with real-time recommendations. The highest performing E2DR variant, which included the ResNet50 and VGG16 models, achieved a test accuracy of 92% as applied to state-of-the-art datasets, including the State Farm Distracted Drivers dataset, using novel data splitting strategies.

摘要

交通事故的数量不断增加,是当前交通系统中的一个重大问题。根据世界卫生组织(WHO)的数据,道路交通事故是全球第八大最高死因。超过 80%的道路交通事故是由分心驾驶引起的,例如使用手机、与乘客交谈和吸烟。为了解决驾驶员分心的问题,已经做出了很多努力;然而,并没有提供最佳的解决方案。解决这个问题的一个实际方法是实施驾驶员活动的定量措施,并设计一个可以检测分心行为的分类系统。在本文中,我们实现了一套经过验证的各种集成深度学习模型,这些模型可以有效地对驾驶员分心行为进行分类,并提供车内建议,以最大限度地减少分心程度,提高车内意识,从而提高安全性。本文提出了 E2DR,这是一种新的可扩展模型,它使用堆叠集成方法将两个或更多的深度学习模型结合起来,以提高准确性、增强泛化能力和减少过拟合,并提供实时建议。在应用于最先进的数据集时,包括 State Farm 分心驾驶员数据集,使用新颖的数据分割策略,包含 ResNet50 和 VGG16 模型的最高性能 E2DR 变体实现了 92%的测试准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8562/8914716/714ab7526ede/sensors-22-01858-g001.jpg

相似文献

1
E2DR: A Deep Learning Ensemble-Based Driver Distraction Detection with Recommendations Model.
Sensors (Basel). 2022 Feb 26;22(5):1858. doi: 10.3390/s22051858.
2
CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture.
Comput Biol Med. 2024 Sep;180:108945. doi: 10.1016/j.compbiomed.2024.108945. Epub 2024 Aug 1.
4
Unusual Driver Behavior Detection in Videos Using Deep Learning Models.
Sensors (Basel). 2022 Dec 28;23(1):311. doi: 10.3390/s23010311.
5
A Machine-Learning Approach to Distinguish Passengers and Drivers Reading While Driving.
Sensors (Basel). 2019 Jul 19;19(14):3174. doi: 10.3390/s19143174.
6
A Hybrid Deep Learning Model for Recognizing Actions of Distracted Drivers.
Sensors (Basel). 2021 Nov 8;21(21):7424. doi: 10.3390/s21217424.
8
Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
Accid Anal Prev. 2017 Apr;101:67-77. doi: 10.1016/j.aap.2017.01.018. Epub 2017 Feb 10.
9
The prevalence of distraction among passenger vehicle drivers: a roadside observational approach.
Traffic Inj Prev. 2015;16(2):140-6. doi: 10.1080/15389588.2014.916797. Epub 2014 Oct 9.
10
Distracted Driving Among Patients with Trauma Attending Fracture Clinics in Canada: The Canadian Multicenter DRIVSAFE Study.
J Bone Joint Surg Am. 2022 Jun 1;104(11):971-979. doi: 10.2106/JBJS.21.01184. Epub 2022 Mar 28.

引用本文的文献

2
Modeling of injury severity of distracted driving accident using statistical and machine learning models.
PLoS One. 2025 Jun 16;20(6):e0326113. doi: 10.1371/journal.pone.0326113. eCollection 2025.
3
Artificial Neural Networks for IoT-Enabled Smart Applications: Recent Trends.
Sensors (Basel). 2023 May 18;23(10):4853. doi: 10.3390/s23104853.
4
Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators.
Sensors (Basel). 2022 Aug 19;22(16):6230. doi: 10.3390/s22166230.

本文引用的文献

1
2
3
Detection of driver manual distraction via image-based hand and ear recognition.
Accid Anal Prev. 2020 Mar;137:105432. doi: 10.1016/j.aap.2020.105432. Epub 2020 Jan 28.
4
Lightweight Driver Monitoring System Based on Multi-Task Mobilenets.
Sensors (Basel). 2019 Jul 20;19(14):3200. doi: 10.3390/s19143200.
5
Driver's Facial Expression Recognition in Real-Time for Safe Driving.
Sensors (Basel). 2018 Dec 4;18(12):4270. doi: 10.3390/s18124270.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验