文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 EMG 信号的深度和双深度 Q 网络的手势识别。

Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks.

机构信息

Artificial Intelligence and Computer Vision Research Lab, Escuela Politécnica Nacional, Quito 170517, Ecuador.

Faculty of Engineering, Universidad Andres Bello, Santiago, Chile.

出版信息

Sensors (Basel). 2023 Apr 12;23(8):3905. doi: 10.3390/s23083905.


DOI:10.3390/s23083905
PMID:37112246
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10144727/
Abstract

In recent years, hand gesture recognition (HGR) technologies that use electromyography (EMG) signals have been of considerable interest in developing human-machine interfaces. Most state-of-the-art HGR approaches are based mainly on supervised machine learning (ML). However, the use of reinforcement learning (RL) techniques to classify EMGs is still a new and open research topic. Methods based on RL have some advantages such as promising classification performance and online learning from the user's experience. In this work, we propose a user-specific HGR system based on an RL-based agent that learns to characterize EMG signals from five different hand gestures using Deep Q-network (DQN) and Double-Deep Q-Network (Double-DQN) algorithms. Both methods use a feed-forward artificial neural network (ANN) for the representation of the agent policy. We also performed additional tests by adding a long-short-term memory (LSTM) layer to the ANN to analyze and compare its performance. We performed experiments using training, validation, and test sets from our public dataset, EMG-EPN-612. The final accuracy results demonstrate that the best model was DQN without LSTM, obtaining classification and recognition accuracies of up to 90.37%±10.7% and 82.52%±10.9%, respectively. The results obtained in this work demonstrate that RL methods such as DQN and Double-DQN can obtain promising results for classification and recognition problems based on EMG signals.

摘要

近年来,使用肌电图 (EMG) 信号的手势识别 (HGR) 技术在开发人机界面方面引起了相当大的兴趣。大多数最先进的 HGR 方法主要基于监督机器学习 (ML)。然而,使用强化学习 (RL) 技术对 EMG 进行分类仍然是一个新的开放研究课题。基于 RL 的方法具有一些优势,例如有前途的分类性能和从用户经验中进行在线学习。在这项工作中,我们提出了一个基于 RL 代理的特定于用户的 HGR 系统,该代理使用深度 Q 网络 (DQN) 和双深度 Q 网络 (Double-DQN) 算法学习从五个不同的手势中对 EMG 信号进行特征化。这两种方法都使用前馈人工神经网络 (ANN) 来表示代理策略。我们还通过在 ANN 中添加长短期记忆 (LSTM) 层来进行额外的测试,以分析和比较其性能。我们使用来自我们的公共数据集 EMG-EPN-612 的训练、验证和测试集进行实验。最终的准确性结果表明,最好的模型是没有 LSTM 的 DQN,分别获得高达 90.37%±10.7%和 82.52%±10.9%的分类和识别准确率。这项工作的结果表明,DQN 和 Double-DQN 等 RL 方法可以为基于 EMG 信号的分类和识别问题获得有前途的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/1e1f5ba8067b/sensors-23-03905-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/7deee6e2a610/sensors-23-03905-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/2349cbdaba68/sensors-23-03905-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/7b36a2645505/sensors-23-03905-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/ef234578db6a/sensors-23-03905-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/9b77acdf385d/sensors-23-03905-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/c6452609bc34/sensors-23-03905-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/59e87c37bf45/sensors-23-03905-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/6409c16ba296/sensors-23-03905-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/1d765dd76be8/sensors-23-03905-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/431e0dbd9669/sensors-23-03905-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/1e1f5ba8067b/sensors-23-03905-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/7deee6e2a610/sensors-23-03905-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/2349cbdaba68/sensors-23-03905-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/7b36a2645505/sensors-23-03905-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/ef234578db6a/sensors-23-03905-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/9b77acdf385d/sensors-23-03905-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/c6452609bc34/sensors-23-03905-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/59e87c37bf45/sensors-23-03905-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/6409c16ba296/sensors-23-03905-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/1d765dd76be8/sensors-23-03905-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/431e0dbd9669/sensors-23-03905-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fd/10144727/1e1f5ba8067b/sensors-23-03905-g011.jpg

相似文献

[1]
Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks.

Sensors (Basel). 2023-4-12

[2]
Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks.

Sensors (Basel). 2022-12-8

[3]
A Deep Q-Network based hand gesture recognition system for control of robotic platforms.

Sci Rep. 2023-5-17

[4]
Dual Stream Long Short-Term Memory Feature Fusion Classifier for Surface Electromyography Gesture Recognition.

Sensors (Basel). 2024-6-4

[5]
Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals.

Sensors (Basel). 2022-8-5

[6]
Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks.

Sensors (Basel). 2021-12-29

[7]
TraHGR: Transformer for Hand Gesture Recognition via Electromyography.

IEEE Trans Neural Syst Rehabil Eng. 2023

[8]
FS-HGR: Few-Shot Learning for Hand Gesture Recognition via Electromyography.

IEEE Trans Neural Syst Rehabil Eng. 2021

[9]
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network.

Sensors (Basel). 2023-1-28

[10]
Transformer-based hand gesture recognition from instantaneous to fused neural decomposition of high-density EMG signals.

Sci Rep. 2023-7-7

引用本文的文献

[1]
Electromyography Signal Acquisition, Filtering, and Data Analysis for Exoskeleton Development.

Sensors (Basel). 2025-6-27

[2]
Review of sEMG for Exoskeleton Robots: Motion Intention Recognition Techniques and Applications.

Sensors (Basel). 2025-4-13

[3]
Big data in myoelectric control: large multi-user models enable robust zero-shot EMG-based discrete gesture recognition.

Front Bioeng Biotechnol. 2024-9-23

[4]
On the Distribution of Muscle Signals: A Method for Distance-Based Classification of Human Gestures.

Sensors (Basel). 2023-8-26

[5]
A 3D Printed, Bionic Hand Powered by EMG Signals and Controlled by an Online Neural Network.

Biomimetics (Basel). 2023-6-14

本文引用的文献

[1]
Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks.

Sensors (Basel). 2022-12-8

[2]
BioWolf16: a 16-channel, 24-bit, 4kSPS Ultra-Low Power Platform for Wearable Clinical-grade Bio-potential Parallel Processing and Streaming.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[3]
Wearable Real-Time Gesture Recognition Scheme Based on A-Mode Ultrasound.

IEEE Trans Neural Syst Rehabil Eng. 2022

[4]
Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals.

Sensors (Basel). 2022-8-5

[5]
A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.

Sensors (Basel). 2022-5-11

[6]
User-Independent Hand Gesture Recognition Classification Models Using Sensor Fusion.

Sensors (Basel). 2022-2-9

[7]
Hand Gesture Recognition Based on Computer Vision: A Review of Techniques.

J Imaging. 2020-7-23

[8]
An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems.

Sensors (Basel). 2020-11-6

[9]
EMG-Based Hand Gesture Classification with Long Short-Term Memory Deep Recurrent Neural Networks.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[10]
A Hierarchical Hand Gesture Recognition Framework for Sports Referee Training-Based EMG and Accelerometer Sensors.

IEEE Trans Cybern. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索