Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2518-2522. doi: 10.1109/EMBC48229.2022.9871898.
Low-power wearable systems are essential for medical and industrial applications, but they face crucial implementation challenges when providing energy-efficient compact design while increasing the number of available channels, sampling rate and overall processing power. This work presents a small (39×41mm) wireless embedded low-power HMI device for ExG signals, offering up to 16 channels sampled at up to 4kSPS. By virtue of the high sampling rate and medical-grade signal quality (i.e. compliant with the IFCN standards), BioWolf16 is capable of accurate gesture recognition and enables the possibility to acquire data for neural spikes extraction. When employed over an EMG gesture recognition paradigm, the system achieves 90.24% classification accuracy over nine gestures (16 channels @4kSPS) while requiring only 16mW of power (57h of continuous operation) when deployed on Mr. Wolf MCU, part of the system architecture. The system can also provide up to 14h of real-time data streaming (4kSPS), which can further be extended to 23h when reducing the sampling rate to 1kSPS. Our results also demonstrate that this design outperforms many features of current state-of-the-art systems. Clinical Relevance - This work establishes that BioWolf16 is a wearable ultra-low power device enabling advanced multi-channel streaming and processing of medical-grade EMG signal, that can expand research opportunities and applications in healthcare and industrial scenarios.
低功耗可穿戴系统对于医疗和工业应用至关重要,但在提供节能紧凑型设计的同时,增加可用通道数量、提高采样率和整体处理能力时,它们面临着关键的实现挑战。本工作提出了一种用于 ExG 信号的小型(39×41mm)无线嵌入式低功耗人机接口设备,可提供高达 16 个通道、最高 4kSPS 的采样率。由于高采样率和医疗级信号质量(即符合 IFCN 标准),BioWolf16 能够实现准确的手势识别,并有可能获取用于神经峰提取的数据。在采用 EMG 手势识别范式时,该系统在 9 个手势(16 个通道@4kSPS)上实现了 90.24%的分类准确率,而在部署到 Mr. Wolf MCU 时仅需要 16mW 的功率(57h 的连续运行),这是系统架构的一部分。该系统还可以提供长达 14 小时的实时数据流(4kSPS),当采样率降低到 1kSPS 时,还可以进一步扩展到 23 小时。我们的结果还表明,该设计优于许多当前最先进系统的功能。临床相关性-这项工作表明,BioWolf16 是一种可穿戴超低功耗设备,能够实现医疗级 EMG 信号的高级多通道流媒体和处理,从而为医疗保健和工业场景中的研究机会和应用提供扩展。