基于肌电和加速度计传感器的分层手势识别框架,用于体育裁判培训。

A Hierarchical Hand Gesture Recognition Framework for Sports Referee Training-Based EMG and Accelerometer Sensors.

出版信息

IEEE Trans Cybern. 2022 May;52(5):3172-3183. doi: 10.1109/TCYB.2020.3007173. Epub 2022 May 19.

Abstract

To cultivate professional sports referees, we develop a sports referee training system, which can recognize whether a trainee wearing the Myo armband makes correct judging signals while watching a prerecorded professional game. The system has to correctly recognize a set of gestures related to official referee's signals (ORSs) and another set of gestures used to intuitively interact with the system. These two gesture sets involve both large motion and subtle motion gestures, and the existing sensor-based methods using handcrafted features do not work well on recognizing all kinds of these gestures. In this work, deep belief networks (DBNs) are utilized to learn more representative features for hand gesture recognition, and selective handcrafted features are combined with the DBN features to achieve more robust recognition results. Moreover, a hierarchical recognition scheme is designed to first recognize the input gesture as a large or subtle motion gesture, and the corresponding classifiers for large motion gestures and subtle motion gestures are further used to obtain the final recognition result. Moreover, the Myo armband consists of eight-channel surface electromyography (sEMG) sensors and an inertial measurement unit (IMU), and these heterogeneous signals can be fused to achieve better recognition accuracy. We take basketball as an example to validate the proposed training system, and the experimental results show that the proposed hierarchical scheme considering DBN features of multimodality data outperforms other methods.

摘要

为了培养专业的体育裁判,我们开发了一个体育裁判训练系统,可以识别佩戴 Myo 臂带的学员在观看预先录制的职业比赛时是否做出正确的判断信号。该系统必须正确识别与官方裁判信号(ORS)相关的一组手势和另一组用于直观与系统交互的手势。这两组手势既涉及大幅度运动手势,也涉及细微运动手势,而现有的基于传感器的使用手工制作特征的方法无法很好地识别所有这些手势。在这项工作中,深度置信网络(DBN)用于学习更具代表性的手势识别特征,并结合 DBN 特征与手工制作特征,以获得更鲁棒的识别结果。此外,设计了一种分层识别方案,首先将输入手势识别为大幅度或细微运动手势,然后进一步使用针对大幅度运动手势和细微运动手势的相应分类器来获得最终的识别结果。此外,Myo 臂带由八通道表面肌电图(sEMG)传感器和惯性测量单元(IMU)组成,这些异构信号可以融合以实现更好的识别精度。我们以篮球为例验证了所提出的训练系统,实验结果表明,所提出的分层方案考虑了多模态数据的 DBN 特征,优于其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索