Suppr超能文献

以人为中心的工业数字孪生体:使能技术与实施策略的全面综述

Human-Centric Digital Twins in Industry: A Comprehensive Review of Enabling Technologies and Implementation Strategies.

机构信息

Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 45750, Pakistan.

Department of Mechatronics Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2023 Apr 12;23(8):3938. doi: 10.3390/s23083938.

Abstract

The last decade saw the emergence of highly autonomous, flexible, re-configurable Cyber-Physical Systems. Research in this domain has been enhanced by the use of high-fidelity simulations, including Digital Twins, which are virtual representations connected to real assets. Digital Twins have been used for process supervision, prediction, or interaction with physical assets. Interaction with Digital Twins is enhanced by Virtual Reality and Augmented Reality, and Industry 5.0-focused research is evolving with the involvement of the human aspect in Digital Twins. This paper aims to review recent research on Human-Centric Digital Twins (HCDTs) and their enabling technologies. A systematic literature review is performed using the VOSviewer keyword mapping technique. Current technologies such as motion sensors, biological sensors, computational intelligence, simulation, and visualization tools are studied for the development of HCDTs in promising application areas. Domain-specific frameworks and guidelines are formed for different HCDT applications that highlight the workflow and desired outcomes, such as the training of AI models, the optimization of ergonomics, the security policy, task allocation, etc. A guideline and comparative analysis for the effective development of HCDTs are created based on the criteria of Machine Learning requirements, sensors, interfaces, and Human Digital Twin inputs.

摘要

过去十年见证了高度自主、灵活、可重构的网络物理系统的出现。该领域的研究通过使用高保真模拟得到了加强,包括与实际资产相连的数字孪生体。数字孪生体被用于过程监督、预测或与物理资产交互。虚拟现实和增强现实增强了与数字孪生体的交互,而以人为中心的数字孪生体(HCDT)的工业 5.0 研究也在不断发展,涉及到数字孪生体中的人为因素。本文旨在回顾关于以人为中心的数字孪生体(HCDT)及其支持技术的最新研究。使用 VOSviewer 关键字映射技术进行了系统的文献综述。研究了运动传感器、生物传感器、计算智能、模拟和可视化工具等当前技术,以开发在有前途的应用领域中的 HCDT。针对不同的 HCDT 应用形成了特定于域的框架和指南,突出了工作流程和预期结果,例如人工智能模型的训练、人体工程学的优化、安全策略、任务分配等。基于机器学习需求、传感器、接口和人类数字孪生体输入的标准,创建了 HCDT 有效开发的指南和比较分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4113/10146632/e97f6b811ae0/sensors-23-03938-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验