Suppr超能文献

农业的状态空间:一个元系统设计自动化框架。

State spaces for agriculture: A meta-systematic design automation framework.

作者信息

Runck Bryan, Streed Adam, Wang Diane R, Ewing Patrick M, Kantar Michael B, Raghavan Barath

机构信息

University of Minnesota GEMS Informatics Center, 248 Ruttan Hall, 1994 Buford Ave, St Paul, MN 55108, USA.

Independent Scientist, 301 S 1100 WM302 American Fork, UT 84003, USA.

出版信息

PNAS Nexus. 2023 Mar 16;2(4):pgad084. doi: 10.1093/pnasnexus/pgad084. eCollection 2023 Apr.

Abstract

Agriculture is a designed system with the largest areal footprint of any human activity. In some cases, the designs within agriculture emerged over thousands of years, such as the use of rows for the spatial organization of crops. In other cases, designs were deliberately chosen and implemented over decades, as during the Green Revolution. Currently, much work in the agricultural sciences focuses on evaluating designs that could improve agriculture's sustainability. However, approaches to agricultural system design are diverse and fragmented, relying on individual intuition and discipline-specific methods to meet stakeholders' often semi-incompatible goals. This ad-hoc approach presents the risk that agricultural science will overlook nonobvious designs with large societal benefits. Here, we introduce a state space framework, a common approach from computer science, to address the problem of proposing and evaluating agricultural designs computationally. This approach overcomes limitations of current agricultural system design methods by enabling a general set of computational abstractions to explore and select from a very large agricultural design space, which can then be empirically tested.

摘要

农业是一个设计系统,其占地面积在所有人类活动中最大。在某些情况下,农业内部的设计历经数千年才出现,比如采用行来对作物进行空间布局。在其他情况下,设计是在几十年间经过深思熟虑后选定并实施的,就像绿色革命期间那样。目前,农业科学的许多工作都集中在评估那些能够提高农业可持续性的设计上。然而,农业系统设计的方法多种多样且零散,依靠个人直觉和特定学科方法来满足利益相关者往往半不相容的目标。这种临时拼凑的方法存在风险,即农业科学可能会忽视具有重大社会效益的不那么明显的设计。在此,我们引入一种状态空间框架,这是计算机科学中的一种常用方法,用于通过计算来提出和评估农业设计问题。这种方法通过启用一组通用的计算抽象来克服当前农业系统设计方法的局限性,从而能够在一个非常大的农业设计空间中进行探索和选择,然后可以进行实证检验。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Agriculture: science and technology safeguard sustainability.农业:科学技术保障可持续发展。
Natl Sci Rev. 2019 May;6(3):595-600. doi: 10.1093/nsr/nwz036. Epub 2019 Mar 16.
9

引用本文的文献

本文引用的文献

2
Plant Breeding for Intercropping in Temperate Field Crop Systems: A Review.温带大田作物系统间作的植物育种:综述
Front Plant Sci. 2022 Mar 31;13:843065. doi: 10.3389/fpls.2022.843065. eCollection 2022.
5
Deep reinforcement learning for de novo drug design.基于深度强化学习的从头药物设计。
Sci Adv. 2018 Jul 25;4(7):eaap7885. doi: 10.1126/sciadv.aap7885. eCollection 2018 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验