Suppr超能文献

谁结合得更好?让 AlphaFold2 来决定!

Who Binds Better? Let Alphafold2 Decide!

机构信息

Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel.

出版信息

Angew Chem Int Ed Engl. 2023 Jul 10;62(28):e202303526. doi: 10.1002/anie.202303526. Epub 2023 May 15.

Abstract

Deep learning is revolutionizing structural biology to an unprecedented extent. Spearheaded by DeepMind's Alphafold2, structural models of high quality can be generated, and are now available for most known proteins and many protein interactions. The next challenge will be to leverage this rich structural corpus to learn about binding: which protein can contact which partner(s), and at what affinity? In a recent study, Chang and Perez have presented an elegant approach towards this challenging goal for interactions that involve a short peptide binding to its receptor. The basic idea is straightforward: given a receptor that binds to two peptides, if the receptor sequence is presented with both peptides together at the same time, AlphaFold2 should model the tighter binding peptide into the binding site, while excluding the second. A simple idea that works!

摘要

深度学习正在以前所未有的程度推动结构生物学的发展。在 DeepMind 的 AlphaFold2 的引领下,高质量的结构模型得以生成,目前已可用于大多数已知蛋白质和许多蛋白质相互作用。下一个挑战将是利用这个丰富的结构资料库来了解结合情况:哪种蛋白质可以与哪种(些)伴侣结合,亲和力如何?在最近的一项研究中,Chang 和 Perez 针对涉及短肽与其受体结合的相互作用这一极具挑战性的目标提出了一种优雅的方法。基本思路很简单:如果给一个同时结合两个肽的受体,当受体序列同时呈现两个肽时,AlphaFold2 应该将结合更紧密的肽建模到结合位点中,同时排除第二个。一个简单而有效的想法!

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验