Suppr超能文献

利用计算机辅助设计和人工智能开发下一代多表位结核疫苗候选物。

Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate.

作者信息

Zhuang Li, Ali Awais, Yang Ling, Ye Zhaoyang, Li Linsheng, Ni Ruizi, An Yajing, Ali Syed Luqman, Gong Wenping

机构信息

Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China.

Graduate School, Hebei North University, Zhangjiakou 075000, Hebei Province, China.

出版信息

Infect Med (Beijing). 2024 Nov 9;3(4):100148. doi: 10.1016/j.imj.2024.100148. eCollection 2024 Dec.

Abstract

BACKGROUND

Tuberculosis (TB) remains a global public health challenge. The existing Bacillus Calmette-Guérin vaccine has limited efficacy in preventing adult pulmonary TB, necessitating the development of new vaccines with improved protective effects.

METHODS

Computer-aided design and artificial intelligence technologies, combined with bioinformatics and immunoinformatics approaches, were used to design a multi-epitope vaccine (MEV) against TB. Comprehensive bioinformatics analyses were conducted to evaluate the physicochemical properties, spatial structure, immunogenicity, molecular dynamics (MD), and immunological characteristics of the MEV.

RESULTS

We constructed a MEV, designated ZL12138L, containing 13 helper T lymphocyte epitopes, 12 cytotoxic T lymphocyte epitopes, 8 B-cell epitopes, as well as Toll-like receptor (TLR) agonists and helper peptides. Bioinformatics analyses revealed that ZL12138L should exhibit excellent immunogenicity and antigenicity, with no toxicity or allergenicity, and had potential to induce robust immune responses and high solubility, the immunogenicity score was 4.14449, the antigenicity score was 0.8843, and the immunological score was 0.470. Moreover, ZL12138L showed high population coverage for human leukocyte antigen class I and II alleles, reaching 92.41% and 90.17%, respectively, globally. Molecular docking analysis indicated favorable binding affinity of ZL12138L with TLR-2 and TLR-4, with binding energies of -1173.4 and -1360.5 kcal/mol, respectively. Normal mode analysis and MD simulations indicated the stability and dynamic properties of the vaccine construct. Immune simulation predictions suggested that ZL12138L could effectively activate innate and adaptive immune cells, inducing high levels of Type 1 T helper cell cytokines.

CONCLUSIONS

This study provides compelling evidence for ZL12138L as a promising TB vaccine candidate. Future research will focus on experimental validation and further optimization of the vaccine design.

摘要

背景

结核病仍然是一项全球性的公共卫生挑战。现有的卡介苗在预防成人肺结核方面效果有限,因此需要研发具有更好保护效果的新型疫苗。

方法

利用计算机辅助设计和人工智能技术,结合生物信息学和免疫信息学方法,设计一种抗结核多表位疫苗(MEV)。进行全面的生物信息学分析,以评估MEV的物理化学性质、空间结构、免疫原性、分子动力学(MD)和免疫学特征。

结果

我们构建了一种名为ZL12138L的MEV,它包含13个辅助性T淋巴细胞表位、12个细胞毒性T淋巴细胞表位、8个B细胞表位,以及Toll样受体(TLR)激动剂和辅助肽。生物信息学分析表明,ZL12138L应具有出色的免疫原性和抗原性,无毒性或过敏性,并且有潜力诱导强烈的免疫反应和高溶解度,免疫原性评分为4.14449,抗原性评分为0.8843,免疫学评分为0.470。此外,ZL12138L对人类白细胞抗原I类和II类等位基因具有较高的人群覆盖率,在全球范围内分别达到92.41%和90.17%。分子对接分析表明,ZL12138L与TLR-2和TLR-4具有良好的结合亲和力,结合能分别为-1173.4和-1360.5 kcal/mol。正常模式分析和MD模拟表明了疫苗构建体的稳定性和动力学特性。免疫模拟预测表明,ZL12138L可以有效激活先天性和适应性免疫细胞,诱导高水平的1型辅助性T细胞细胞因子。

结论

本研究为ZL12138L作为一种有前景的结核疫苗候选物提供了有力证据。未来的研究将集中在疫苗设计的实验验证和进一步优化上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c21/11647498/7f89d6f9e19e/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验