Suppr超能文献

基于局部到全局的空间学习的全切片图像表示和分类。

Local-to-global spatial learning for whole-slide image representation and classification.

机构信息

Department of Biomedical Enginearing, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.

Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.

出版信息

Comput Med Imaging Graph. 2023 Jul;107:102230. doi: 10.1016/j.compmedimag.2023.102230. Epub 2023 Apr 22.

Abstract

Whole-slide image (WSI) provides an important reference for clinical diagnosis. Classification with only WSI-level labels can be recognized for multi-instance learning (MIL) tasks. However, most existing MIL-based WSI classification methods have moderate performance on correlation mining between instances limited by their instance- level classification strategy. Herein, we propose a novel local-to-global spatial learning method to mine global position and local morphological information by redefining the MIL-based WSI classification strategy, better at learning WSI-level representation, called Global-Local Attentional Multi-Instance Learning (GLAMIL). GLAMIL can focus on regional relationships rather than single instances. It first learns relationships between patches in the local pool to aggregate region correlation (tissue types of a WSI). These correlations then can be further mined to fulfill WSI-level representation, where position correlation between different regions can be modeled. Furthermore, Transformer layers are employed to model global and local spatial information rather than being simply used as feature extractors, and the corresponding structure improvements are present. In addition, we evaluate GIAMIL on three benchmarks considering various challenging factors and achieve satisfactory results. GLAMIL outperforms state-of-the-art methods and baselines by about 1 % and 10 %, respectively.

摘要

全切片图像 (WSI) 为临床诊断提供了重要参考。仅使用 WSI 级别的标签进行分类可以识别多实例学习 (MIL) 任务。然而,大多数现有的基于 MIL 的 WSI 分类方法由于其实例级分类策略的限制,在实例之间的相关性挖掘方面性能中等。在这里,我们提出了一种新的局部到全局空间学习方法,通过重新定义基于 MIL 的 WSI 分类策略来挖掘全局位置和局部形态信息,更好地学习 WSI 级别的表示,称为全局-局部注意多实例学习 (GLAMIL)。GLAMIL 可以专注于区域关系而不是单个实例。它首先学习局部池中的补丁之间的关系,以聚合区域相关性(WSI 的组织类型)。然后可以进一步挖掘这些相关性以完成 WSI 级别的表示,其中可以对不同区域之间的位置相关性进行建模。此外,Transformer 层用于建模全局和局部空间信息,而不是简单地用作特征提取器,并存在相应的结构改进。此外,我们在三个基准上评估了 GIAMIL,考虑了各种具有挑战性的因素,并取得了令人满意的结果。GLAMIL 分别比最先进的方法和基线高出约 1%和 10%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验