Suppr超能文献

利用 Gail 评估模型在伊拉克识别乳腺癌风险因素。

Identify Breast Cancer Risk Factors Using the Gail Assessment Model in Iraq.

机构信息

College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq.

College of MLT, Ahl Al Bayt University, Kerbala, Iraq.

出版信息

Arch Razi Inst. 2022 Oct 31;77(5):1901-1907. doi: 10.22092/ARI.2022.359509.2436. eCollection 2022 Oct.

Abstract

The prevalence of breast cancer (BC) has increased significantly in the last 50 years worldwide. This increase may be because more women today have mammograms and, as a result, are more known to have cancers. At the same time, the theory is growing that many other factors contribute to the increase in cancer rates. The current study tried applying the Gail assessment model to identify hormonal and familial risk factors that may be important for BC in Iraq. Patients aged 30 years and over with all known risk factors for BC were selected for the study group. The selected patients were divided into two groups. Group 1: Patients diagnosed with non-proliferative lesions who have had a breast biopsy performed at least three years before; Group 2: Controlled patients. The individual risk of BC for patients in groups 1 and 2 was calculated using the Gale model. In addition to groups 1 and 2, we identified two other groups. Group 3: Groups 1 and 2 of patients without BC at the end of the 3-year follow-up period; Group 4: Patients who have undergone BC surgery. Multiple regression tests assessed all known risk factors in groups 3 and 4 to determine the risk factors for the development of BC in Iraq. The results show that Gail's assessment model is a reliable example of calculating the risk of developing BC. The model results show that the significant risk factor for BC in Iraq is not hormonal but genetic or familial. Current research also shows that the risk of developing BC increases significantly with age. It was concluded that there are genetic factors, and the risk of developing BC increases with age, but hormonal features do not cause a significant increase in risk. Identifying risk factors in causing disease in the community makes it possible to prepare codified plans to control and treat the disease.

摘要

乳腺癌(BC)的患病率在过去 50 年中在全球范围内显著增加。这种增加可能是因为今天有更多的女性接受乳房 X 光检查,因此更多的人知道患有癌症。与此同时,越来越多的理论认为,许多其他因素也导致癌症发病率上升。本研究试图应用 Gail 评估模型来确定可能对伊拉克 BC 具有重要意义的激素和家族风险因素。选择了年龄在 30 岁及以上且具有所有已知 BC 风险因素的患者作为研究组。将选定的患者分为两组。第 1 组:诊断为非增生性病变的患者,他们在至少三年前进行过乳房活检;第 2 组:对照组患者。使用 Gail 模型计算第 1 组和第 2 组患者的 BC 个体风险。除了第 1 组和第 2 组,我们还确定了另外两组。第 3 组:在 3 年随访结束时没有发生 BC 的第 1 组和第 2 组患者;第 4 组:接受过 BC 手术的患者。多元回归检验评估了第 3 组和第 4 组中所有已知的风险因素,以确定在伊拉克发生 BC 的风险因素。结果表明,Gail 评估模型是计算发生 BC 风险的可靠范例。模型结果表明,伊拉克 BC 的重要风险因素不是激素,而是遗传或家族因素。目前的研究还表明,BC 的发病风险随着年龄的增长而显著增加。研究结论是存在遗传因素,且 BC 的发病风险随着年龄的增长而增加,但激素特征不会导致风险显著增加。确定社区疾病发病的风险因素可以制定规范化计划来控制和治疗疾病。

相似文献

1
Identify Breast Cancer Risk Factors Using the Gail Assessment Model in Iraq.
Arch Razi Inst. 2022 Oct 31;77(5):1901-1907. doi: 10.22092/ARI.2022.359509.2436. eCollection 2022 Oct.
2
Low vitamin D level increases women's breast cancer risks, Sulaimaniyah, Iraq: A case-control study.
Cell Mol Biol (Noisy-le-grand). 2023 Dec 20;69(14):186-190. doi: 10.14715/cmb/2023.69.14.30.
6
Is using the Gail model to calculate the risk of breast cancer in the Venezuelan population justified?
Ecancermedicalscience. 2023 Aug 21;17:1590. doi: 10.3332/ecancer.2023.1590. eCollection 2023.
7
The prognostic significance of Gail model risk factors for women with breast cancer.
Am J Surg. 2002 Jul;184(1):11-5. doi: 10.1016/s0002-9610(02)00885-1.
8
Applicability of the Gail model for breast cancer risk assessment in Turkish female population and evaluation of breastfeeding as a risk factor.
Breast Cancer Res Treat. 2010 Apr;120(2):419-24. doi: 10.1007/s10549-009-0541-8. Epub 2009 Sep 17.
10
Breast Cancer Risk Assessment Using the Gail Model and It’s Predictors in Saudi Women.
Asian Pac J Cancer Prev. 2017 Nov 26;18(11):2971-2975. doi: 10.22034/APJCP.2017.18.11.2971.

本文引用的文献

1
Mechanistic Effects of Estrogens on Breast Cancer.
Cancer J. 2022;28(3):224-240. doi: 10.1097/PPO.0000000000000596.
2
Use and Applicability of the Gail Model to Calculate Breast Cancer Risk: A Scoping Review.
Asian Pac J Cancer Prev. 2022 Apr 1;23(4):1117-1123. doi: 10.31557/APJCP.2022.23.4.1117.
3
Gail model utilization in predicting breast cancer risk in Egyptian women: a cross-sectional study.
Breast Cancer Res Treat. 2021 Aug;188(3):749-758. doi: 10.1007/s10549-021-06200-z. Epub 2021 Apr 14.
4
Assessing Risk of Breast Cancer: A Review of Risk Prediction Models.
J Breast Imaging. 2021 Feb 19;3(2):144-155. doi: 10.1093/jbi/wbab001. eCollection 2021 Mar-Apr.
5
Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020.
Chin Med J (Engl). 2021 Mar 17;134(7):783-791. doi: 10.1097/CM9.0000000000001474.
6
Key steps for effective breast cancer prevention.
Nat Rev Cancer. 2020 Aug;20(8):417-436. doi: 10.1038/s41568-020-0266-x. Epub 2020 Jun 11.
7
Assessment of the risk of developing breast cancer using the Gail model in Asian females: A systematic review.
Heliyon. 2020 Apr 22;6(4):e03794. doi: 10.1016/j.heliyon.2020.e03794. eCollection 2020 Apr.
8
International evaluation of an AI system for breast cancer screening.
Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1.
9
10
Breast Cancer Treatment: A Review.
JAMA. 2019 Jan 22;321(3):288-300. doi: 10.1001/jama.2018.19323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验