Pedersen Simon S, Batista Gabriel M F, Henriksen Martin L, Hammershøj Hans Christian D, Hopmann Kathrin H, Skrydstrup Troels
Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University; Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
Department of Biological and Chemical Engineering, Aarhus University; Aabogade 40, 8200 Aarhus N, Denmark.
JACS Au. 2023 Apr 10;3(4):1221-1229. doi: 10.1021/jacsau.3c00092. eCollection 2023 Apr 24.
Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation-catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties.
聚对苯二甲酸乙二酯聚酯是最常见的一类热塑性聚合物,广泛应用于纺织、瓶装和包装行业。对苯二甲酸和乙二醇均源自石化产品,二者聚合生成聚酯。然而,一份较早的报告表明,甲氧基对苯二甲酸与乙二醇聚合可得到具有相似性能的甲氧基聚酯。目前,尚未有成熟的生物基合成路线来制备甲氧基对苯二甲酸单体。在此,我们展示了一条从多种树种制备二元羧酸的可行路线,该路线涉及三个催化步骤。我们证明,锯末可通过氢解转化为有价值的芳基腈中间体,随后通过高效的氟硫化 - 催化氰化序列(>90%),再经水解和氧化转化为甲氧基对苯二甲酸。初步聚合结果表明得到了具有可接受热性能的甲氧基聚酯。