Suppr超能文献

基于机器学习的巨正则全局优化解析的钼掺杂铂镍催化剂在电化学氧还原过程中的原位结构

In Situ Structure of a Mo-Doped Pt-Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization.

作者信息

Li Ji-Li, Li Ye-Fei, Liu Zhi-Pan

机构信息

Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.

Shanghai Qi Zhi Institution, Shanghai 200030, China.

出版信息

JACS Au. 2023 Mar 16;3(4):1162-1175. doi: 10.1021/jacsau.3c00038. eCollection 2023 Apr 24.

Abstract

Pt-Ni alloy is by far the most active cathode material for oxygen reduction reaction (ORR) in the proton-exchange membrane fuel cell, and the addition of a tiny amount of a third-metal Mo can significantly improve the catalyst durability and activity. Here, by developing machine learning-based grand canonical global optimization, we are able to resolve the in situ structures of this important three-element alloy system under ORR conditions and identify their correlations with the enhanced ORR performance. We disclose the bulk phase diagram of Pt-Ni-Mo alloys and determine the surface structures under the ORR reaction conditions by exploring millions of likely structure candidates. The pristine Pt-Ni-Mo alloy surfaces are shown to undergo significant structure reconstruction under ORR reaction conditions, where a surface-adsorbed MoO monomer or MoO dimers cover the Pt-skin surface above 0.9 V vs RHE and protect the surface from Ni leaching. The physical origins are revealed by analyzing the electronic structure of O atoms in MoO and on the Pt surface. In viewing the role of high-valence transition metal oxide clusters, we propose a set of quantitative measures for designing better catalysts and predict that six elements in the periodic table, namely, Mo, Tc, Os, Ta, Re, and W, can be good candidates for alloying with PtNi to improve the ORR catalytic performance. We demonstrate that machine learning-based grand canonical global optimization is a powerful and generic tool to reveal the catalyst dynamics behavior in contact with a complex reaction environment.

摘要

铂镍合金是目前质子交换膜燃料电池中氧还原反应(ORR)最具活性的阴极材料,添加少量的第三种金属钼可以显著提高催化剂的耐久性和活性。在此,通过开发基于机器学习的巨正则全局优化方法,我们能够解析该重要三元合金体系在ORR条件下的原位结构,并确定它们与ORR性能增强之间的相关性。我们揭示了铂镍钼合金的体相图,并通过探索数百万种可能的结构候选物来确定ORR反应条件下的表面结构。结果表明,在ORR反应条件下,原始的铂镍钼合金表面会发生显著的结构重构,其中表面吸附的MoO单体或MoO二聚体在相对于可逆氢电极(RHE)0.9V以上覆盖铂皮表面,保护表面免受镍浸出。通过分析MoO中以及铂表面的O原子的电子结构揭示了其物理起源。鉴于高价过渡金属氧化物簇的作用,我们提出了一套设计更好催化剂的定量措施,并预测元素周期表中的六种元素,即钼、锝、锇、钽、铼和钨,可能是与铂镍合金化以提高ORR催化性能的良好候选元素。我们证明基于机器学习的巨正则全局优化是一种强大且通用的工具,可用于揭示与复杂反应环境接触时催化剂的动力学行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b7/10131196/fab236284d53/au3c00038_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验