Nan Hexin, Cai Ming, Wang Yiyu, Wang Hong-Hui, Nie Zhou
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China.
Adv Sci (Weinh). 2025 Aug;12(32):e05073. doi: 10.1002/advs.202505073. Epub 2025 Jun 30.
Precise modulation of receptor-mediated signaling is essential for understanding cellular communication and developing targeted therapeutics. Receptor engineering strategies focus on enhancing specificity, manipulating allosteric effects, and controlling receptor clustering. This review comprehensively summarizes recent advances in DNA-based strategies as versatile platforms for receptor engineering, encompassing both genetic and non-genetic approaches. Genetic approaches leverage DNA's protein-coding capability to reprogram receptor function through techniques like domain fusion and site-directed mutagenesis. Complementarily, non-genetic strategies exploit the structural and functional properties of DNA to achieve multidimensional control over receptor functionalities. Specifically, functional nucleic acids (FNAs) confer novel and customizable molecular recognition responsiveness, while DNA nanostructures, such as DNA origami, provide nanoscale spatial precision for regulating receptor valency and oligomerization. Furthermore, programmable dynamic DNA reactions facilitate the development of nanodevices responsive to diverse stimuli, including proteins, small molecules, ions, light, and mechanical forces. Notably, emerging DNA-based logic circuits and nanorobots offer programmable and autonomous control over receptor signaling. Looking forward, integrating genetic and non-genetic DNA engineering strategies holds significant promise at the interface of synthetic biology and DNA nanotechnology, driving the development of next-generation intelligent cellular systems for precise medicine.
精确调节受体介导的信号传导对于理解细胞通讯和开发靶向治疗方法至关重要。受体工程策略专注于提高特异性、操纵变构效应和控制受体聚集。本综述全面总结了基于DNA的策略作为受体工程通用平台的最新进展,涵盖了遗传和非遗传方法。遗传方法利用DNA的蛋白质编码能力,通过结构域融合和定点诱变等技术重新编程受体功能。作为补充,非遗传策略利用DNA的结构和功能特性来实现对受体功能的多维控制。具体而言,功能性核酸(FNA)赋予新颖且可定制的分子识别响应性,而DNA纳米结构,如DNA折纸,为调节受体价态和寡聚化提供纳米级空间精度。此外,可编程动态DNA反应促进了对包括蛋白质、小分子、离子、光和机械力在内的多种刺激作出响应的纳米器件的开发。值得注意的是,新兴的基于DNA的逻辑电路和纳米机器人为受体信号传导提供了可编程和自主控制。展望未来,整合遗传和非遗传DNA工程策略在合成生物学和DNA纳米技术的交叉领域具有巨大潜力,推动下一代精准医学智能细胞系统的发展。