Institute of Neuroscience and Medicine (INM-6), & Institute for Advanced Simulation (IAS-6), & JARA BRAIN Institute Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.
Peter Grünberg Institute (PGI-7,10), Jülich Research Centre and JARA, Jülich, Germany.
PLoS Comput Biol. 2023 May 2;19(5):e1010989. doi: 10.1371/journal.pcbi.1010989. eCollection 2023 May.
Animals rely on different decision strategies when faced with ambiguous or uncertain cues. Depending on the context, decisions may be biased towards events that were most frequently experienced in the past, or be more explorative. A particular type of decision making central to cognition is sequential memory recall in response to ambiguous cues. A previously developed spiking neuronal network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. In response to an ambiguous cue, the model deterministically recalls the sequence shown most frequently during training. Here, we present an extension of the model enabling a range of different decision strategies. In this model, explorative behavior is generated by supplying neurons with noise. As the model relies on population encoding, uncorrelated noise averages out, and the recall dynamics remain effectively deterministic. In the presence of locally correlated noise, the averaging effect is avoided without impairing the model performance, and without the need for large noise amplitudes. We investigate two forms of correlated noise occurring in nature: shared synaptic background inputs, and random locking of the stimulus to spatiotemporal oscillations in the network activity. Depending on the noise characteristics, the network adopts various recall strategies. This study thereby provides potential mechanisms explaining how the statistics of learned sequences affect decision making, and how decision strategies can be adjusted after learning.
动物在面对模棱两可或不确定的线索时,会依赖不同的决策策略。取决于上下文,决策可能偏向于过去最常经历的事件,或者更具探索性。一种对认知至关重要的特定类型的决策是对模棱两可的线索做出序列记忆回忆。先前开发的一种基于尖峰神经元网络的序列预测和回忆实现,通过局部的、受生物启发的可塑性规则,以无监督的方式学习复杂的、高阶序列。在响应模棱两可的线索时,该模型确定性地回忆在训练过程中显示最频繁的序列。在这里,我们提出了该模型的扩展,使其能够实现一系列不同的决策策略。在这个模型中,通过向神经元提供噪声来产生探索性行为。由于模型依赖于群体编码,不相关的噪声会平均化,并且回忆动力学仍然是有效的确定性的。在存在局部相关噪声的情况下,避免了平均效应,而不会损害模型性能,也不需要大的噪声幅度。我们研究了两种在自然界中出现的相关噪声形式:共享突触背景输入,以及将刺激随机锁定到网络活动的时空振荡。根据噪声特征,网络采用各种回忆策略。这项研究提供了潜在的机制,解释了学习序列的统计数据如何影响决策,以及学习后如何调整决策策略。