Suppr超能文献

具有时间不对称赫布学习的网络中的序列活动特征。

Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning.

机构信息

Department of Neurobiology, The University of Chicago, Chicago, IL 60637.

Department of Neurobiology, Duke University, Durham, NC 27708.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29948-29958. doi: 10.1073/pnas.1918674117. Epub 2020 Nov 11.

Abstract

Sequential activity has been observed in multiple neuronal circuits across species, neural structures, and behaviors. It has been hypothesized that sequences could arise from learning processes. However, it is still unclear whether biologically plausible synaptic plasticity rules can organize neuronal activity to form sequences whose statistics match experimental observations. Here, we investigate temporally asymmetric Hebbian rules in sparsely connected recurrent rate networks and develop a theory of the transient sequential activity observed after learning. These rules transform a sequence of random input patterns into synaptic weight updates. After learning, recalled sequential activity is reflected in the transient correlation of network activity with each of the stored input patterns. Using mean-field theory, we derive a low-dimensional description of the network dynamics and compute the storage capacity of these networks. Multiple temporal characteristics of the recalled sequential activity are consistent with experimental observations. We find that the degree of sparseness of the recalled sequences can be controlled by nonlinearities in the learning rule. Furthermore, sequences maintain robust decoding, but display highly labile dynamics, when synaptic connectivity is continuously modified due to noise or storage of other patterns, similar to recent observations in hippocampus and parietal cortex. Finally, we demonstrate that our results also hold in recurrent networks of spiking neurons with separate excitatory and inhibitory populations.

摘要

在多个物种、神经结构和行为中,已经观察到了多个神经元回路中的序列活动。有人假设序列可能是由学习过程产生的。然而,目前仍不清楚生物上合理的突触可塑性规则是否可以组织神经元活动,形成与实验观察相符的序列统计数据。在这里,我们研究了稀疏连接的递归率网络中的时间不对称赫布规则,并发展了一种用于解释学习后观察到的瞬时序列活动的理论。这些规则将随机输入模式序列转换为突触权重更新。在学习之后,回想起来的序列活动反映在网络活动与存储的每个输入模式之间的瞬时相关性中。使用平均场理论,我们推导出了网络动力学的低维描述,并计算了这些网络的存储容量。回想起来的序列活动的多个时间特征与实验观察结果一致。我们发现,通过学习规则中的非线性,可以控制回想序列的稀疏程度。此外,当由于噪声或其他模式的存储而导致突触连接不断修改时,序列保持稳健的解码,但表现出高度不稳定的动力学,这类似于海马体和顶叶皮层的最近观察结果。最后,我们证明我们的结果也适用于具有独立兴奋性和抑制性群体的尖峰神经元的递归网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad1c/7703604/597895dd74fd/pnas.1918674117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验