Suppr超能文献

优化 mRNA 设计的算法可提高稳定性和免疫原性。

Algorithm for optimized mRNA design improves stability and immunogenicity.

机构信息

Baidu Research USA, Sunnyvale, CA, USA.

School of EECS, Oregon State University, Corvallis, OR, USA.

出版信息

Nature. 2023 Sep;621(7978):396-403. doi: 10.1038/s41586-023-06127-z. Epub 2023 May 2.

Abstract

Messenger RNA (mRNA) vaccines are being used to combat the spread of COVID-19 (refs. ), but they still exhibit critical limitations caused by mRNA instability and degradation, which are major obstacles for the storage, distribution and efficacy of the vaccine products. Increasing secondary structure lengthens mRNA half-life, which, together with optimal codons, improves protein expression. Therefore, a principled mRNA design algorithm must optimize both structural stability and codon usage. However, owing to synonymous codons, the mRNA design space is prohibitively large-for example, there are around 2.4 × 10 candidate mRNA sequences for the SARS-CoV-2 spike protein. This poses insurmountable computational challenges. Here we provide a simple and unexpected solution using the classical concept of lattice parsing in computational linguistics, where finding the optimal mRNA sequence is analogous to identifying the most likely sentence among similar-sounding alternatives. Our algorithm LinearDesign finds an optimal mRNA design for the spike protein in just 11 minutes, and can concurrently optimize stability and codon usage. LinearDesign substantially improves mRNA half-life and protein expression, and profoundly increases antibody titre by up to 128 times in mice compared to the codon-optimization benchmark on mRNA vaccines for COVID-19 and varicella-zoster virus. This result reveals the great potential of principled mRNA design and enables the exploration of previously unreachable but highly stable and efficient designs. Our work is a timely tool for vaccines and other mRNA-based medicines encoding therapeutic proteins such as monoclonal antibodies and anti-cancer drugs.

摘要

信使 RNA(mRNA)疫苗正被用于对抗 COVID-19 的传播(参考文献),但它们仍然存在 mRNA 不稳定性和降解导致的关键限制,这是疫苗产品储存、分发和功效的主要障碍。增加二级结构可以延长 mRNA 的半衰期,这与最优密码子一起,提高了蛋白质的表达。因此,一个有原则的 mRNA 设计算法必须优化结构稳定性和密码子使用。然而,由于同义密码子,mRNA 的设计空间大得令人望而却步——例如,对于 SARS-CoV-2 刺突蛋白,大约有 2.4×10 个候选 mRNA 序列。这带来了无法克服的计算挑战。在这里,我们使用计算语言学中经典的格解析概念提供了一个简单而意外的解决方案,其中找到最优的 mRNA 序列类似于在类似的替代方案中识别最可能的句子。我们的算法 LinearDesign 仅用 11 分钟即可为刺突蛋白找到最优的 mRNA 设计,并且可以同时优化稳定性和密码子使用。LinearDesign 可将 mRNA 疫苗的半衰期和蛋白质表达显著提高,与 COVID-19 和水痘带状疱疹病毒的 mRNA 疫苗的密码子优化基准相比,在小鼠中抗体滴度提高高达 128 倍。这一结果揭示了有原则的 mRNA 设计的巨大潜力,并使以前无法企及的但高度稳定和高效的设计得以探索。我们的工作是一种及时的工具,用于编码治疗性蛋白质(如单克隆抗体和抗癌药物)的疫苗和其他基于 mRNA 的药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb03/10499610/eccbdf535fcf/41586_2023_6127_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验