Institute of Biochemical Design and Discovery, Yale University, West Haven, Connecticut 06516, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA.
RNA. 2023 Aug;29(8):1126-1139. doi: 10.1261/rna.079560.122. Epub 2023 May 2.
Riboswitches function as important translational regulators in bacteria. Comprehensive mutational analysis of transcriptional riboswitches has been used to probe the energetic intricacies of interplay between the aptamer and expression platform, but translational riboswitches have been inaccessible to massively parallel techniques. The guanidine-II (gdm-II) riboswitch is an exclusively translational class. We have integrated RelE cleavage with next-generation sequencing to quantify ligand-dependent changes in translation initiation for all single and double mutations of the gdm-II riboswitch, a total of more than 23,000 variants. This extensive mutational analysis is consistent with the prominent features of the bioinformatic consensus. These data indicate, unexpectedly, that direct sequestration of the Shine-Dalgarno sequence is dispensable for riboswitch function. Additionally, this comprehensive data set reveals important positions not identified in previous computational and crystallographic studies. Mutations in the variable linker region stabilize alternate conformations. The double mutant data reveal the functional importance of the previously modeled P0b helix formed by the 5' and 3' tails that serves as the basis for translational control. Additional mutations to GU wobble base pairs in both P1 and P2 reveal how the apparent cooperativity of the system involves an intricate network of communication between the two binding sites. This comprehensive examination of a translational riboswitch's expression platform illuminates how the riboswitch is precisely tuned and tunable with regard to ligand sensitivity, the amplitude of expression between ON and OFF states, and the cooperativity of ligand binding.
Riboswitches 作为细菌中重要的翻译调节因子发挥作用。对转录性 riboswitches 的全面突变分析已被用于探测适配体和表达平台之间相互作用的能量复杂性,但翻译性 riboswitches 无法通过大规模并行技术进行研究。胍二核苷酸-II(gdm-II)riboswitch 是一种完全翻译的类。我们将 RelE 切割与下一代测序相结合,以定量 gdm-II riboswitch 所有单突变和双突变的配体依赖性翻译起始变化,总共超过 23,000 个变体。这项广泛的突变分析与生物信息共识的突出特征一致。这些数据出人意料地表明,直接隔离 Shine-Dalgarno 序列对于 riboswitch 功能不是必需的。此外,这个全面的数据集揭示了以前的计算和晶体学研究中未识别的重要位置。可变连接区的突变稳定了替代构象。双突变数据揭示了以前建模的 P0b 螺旋的功能重要性,该螺旋由 5'和 3'尾巴形成,是翻译控制的基础。在 P1 和 P2 中的 GU 摆动碱基对的额外突变揭示了系统的表观协同作用如何涉及两个结合位点之间复杂的通信网络。对翻译性 riboswitch 的表达平台的全面检查阐明了 riboswitch 如何针对配体敏感性、ON 和 OFF 状态之间表达的幅度以及配体结合的协同性进行精确调谐和可调谐。