Suppr超能文献

鹰嘴豆(Cicer arietinum L.)应对热胁迫:植物育种与基因组学进展

Chickpea (Cicer arietinum L.) battling against heat stress: plant breeding and genomics advances.

作者信息

Jha Uday Chand, Naik Yogesh Dashrath, Priya Manu, Nayyar Harsh, Sofi Parvaze A, Beena Radha, Kudapa Himabindu, Atta Kousik, Thudi Mahendar, Prasad P V Vara, Siddique Kadambot H M

机构信息

1Indian Council for Agricultural Research (ICAR) - Indian Institute of Pulses Research (IIPR), Kanpur, 208024, Uttar Pradesh, India.

Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, 848125, Bihar, India.

出版信息

Plant Mol Biol. 2025 Jul 31;115(4):101. doi: 10.1007/s11103-025-01628-z.

Abstract

Global climate change, particularly the increasing frequency and intensity of heat stress, poses a significant threat to crop productivity. Chickpea (Cicer arietinum L.) employs various physiological, biochemical, and molecular mechanisms to cope with elevated temperatures, including maintaining leaf chlorophyll content to preserve the functional integrity of photosystem II (PSII) and enhancing canopy temperature depression to reduce overheating. These traits are crucial for sustaining photosynthetic efficiency, plant health, and yield stability under heat stress. Recent advances in multi-omics approaches-including genomics, transcriptomics, proteomics, and metabolomics-have enhanced our understanding of the genetic basis of heat stress tolerance in chickpea. These tools have facilitated the identification of key genes and molecular pathways involved in heat stress responses. Functional characterization of these genes has provided insights into their roles within the complex metabolic and signaling networks that underpin heat resilience. This review explores integrating conventional and modern breeding technologies with high-throughput phenotyping (HTP) platforms to accelerate genetic gains in chickpea under heat stress. HTP tools enable rapid, precise screening of heat-resilient traits, facilitating early selection of superior genotypes. We also highlight recent genomic advancements, including genome-wide association studies, whole-genome resequencing, and pangenome assemblies, which have uncovered novel structural variants, candidate genes, and haplotypes associated with heat tolerance. Leveraging these resources in conjunction with functional analyses offers new opportunities for breeding climate-resilient chickpea cultivars capable of delivering stable yields and quality under adverse conditions. These developments are crucial for safeguarding chickpea productivity and ensuring global food and nutrition security amid climate change.

摘要

全球气候变化,尤其是热应激频率和强度的增加,对作物生产力构成了重大威胁。鹰嘴豆(Cicer arietinum L.)采用多种生理、生化和分子机制来应对温度升高,包括维持叶片叶绿素含量以保持光系统II(PSII)的功能完整性,以及增强冠层温度降低以减少过热。这些特性对于在热应激下维持光合效率、植物健康和产量稳定性至关重要。多组学方法(包括基因组学、转录组学、蛋白质组学和代谢组学)的最新进展增强了我们对鹰嘴豆耐热性遗传基础的理解。这些工具促进了对热应激反应中关键基因和分子途径的鉴定。这些基因的功能表征为它们在支撑耐热性的复杂代谢和信号网络中的作用提供了见解。本综述探讨了将传统和现代育种技术与高通量表型分析(HTP)平台相结合,以加速热应激下鹰嘴豆的遗传增益。HTP工具能够快速、精确地筛选耐热性状,便于早期选择优良基因型。我们还强调了最近的基因组进展,包括全基因组关联研究、全基因组重测序和泛基因组组装,这些研究揭示了与耐热性相关的新结构变异、候选基因和单倍型。将这些资源与功能分析结合起来,为培育能够在不利条件下提供稳定产量和品质的气候适应型鹰嘴豆品种提供了新机会。这些进展对于在气候变化背景下保障鹰嘴豆生产力以及确保全球粮食和营养安全至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验