Suppr超能文献

单次成像在[Lu]Lu-DOTATATE 后剂量学中的应用:降低时间点选择敏感性的现有方法和新的数据驱动模型的准确性。

Single-Time-Point Imaging for Dosimetry After [Lu]Lu-DOTATATE: Accuracy of Existing Methods and Novel Data-Driven Models for Reducing Sensitivity to Time-Point Selection.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan;

Department of Radiology, University of Michigan, Ann Arbor, Michigan.

出版信息

J Nucl Med. 2023 Sep;64(9):1463-1470. doi: 10.2967/jnumed.122.265338. Epub 2023 Jul 27.

Abstract

Estimation of the time-integrated activity (TIA) for dosimetry from imaging at a single time point (STP) facilitates the clinical translation of dosimetry-guided radiopharmaceutical therapy. However, the accuracy of the STP methods for TIA estimation varies on the basis of time-point selection. We constructed patient data-driven regression models to reduce the sensitivity to time-point selection and to compare these new models with commonly used STP methods. SPECT/CT performed at time period (TP) 1 (3-5 h), TP2 (days 1-2), TP3 (days 3-5), and TP4 (days 6-8) after cycle 1 of [Lu]Lu-DOTATATE therapy involved 27 patients with 100 segmented tumors and 54 kidneys. Influenced by the previous physics-based STP models of Madsen et al. and Hänscheid et al., we constructed an STP prediction expression, TIA = () × (), in a SPECT data-driven way (model 1), in which () is the observed activity at imaging time and the curve, (), is estimated with a nonparametric generalized additive model by minimizing the normalized mean square error relative to the TIA derived from 4-time-point SPECT (reference TIA). Furthermore, we fit a generalized additive model that incorporates baseline biomarkers as auxiliary data in addition to the single activity measurement (model 2). Leave-one-out cross validation was performed to evaluate STP models using mean absolute error (MAE) and mean square error between the predicted and reference TIA. At days 3-5, all evaluated STP methods performed very well, with an MAE of less than 7% (between-patient SD of <10%) for both kidneys and tumors. At other TPs, the Madsen method and data-driven models 1 and 2 performed reasonably well (MAEs < 17% for kidneys and < 32% for tumors), whereas the error with the Hänscheid method was substantially higher. The proof of concept of adding baseline biomarkers to the prediction model was demonstrated and showed a moderate enhancement at TP1, especially for estimating kidney TIA (MAE ± SD from 15.6% ± 1.3% to 11.8% ± 1.0%). Evaluations on 500 virtual patients using clinically relevant time-activity simulations showed a similar performance. The performance of the Madsen method and proposed data-driven models is less sensitive to TP selection than is the Hänscheid method. At the earliest TP, which is the most practical, the model incorporating baseline biomarkers outperforms other methods that rely only on the single activity measurement.

摘要

从单点成像(STP)估算时间积分活度(TIA)有助于将放射性药物治疗的剂量引导转化为临床应用。然而,STP 方法估算 TIA 的准确性取决于时间点的选择。我们构建了基于患者数据的回归模型,以降低对时间点选择的敏感性,并将这些新模型与常用的 STP 方法进行比较。

在[Lu]Lu-DOTATATE 治疗周期 1 后的时间窗 1(3-5 h)、时间窗 2(第 1-2 天)、时间窗 3(第 3-5 天)和时间窗 4(第 6-8 天)进行 SPECT/CT 扫描,共涉及 27 名患者的 100 个分割肿瘤和 54 个肾脏。受 Madsen 等人和 Hänscheid 等人先前基于物理的 STP 模型的影响,我们以 SPECT 数据为驱动构建了一个 STP 预测表达式,TIA = () × ()(模型 1),其中 () 是成像时的观测活性,而曲线 () 则通过最小化相对于从 4 个时间点 SPECT(参考 TIA)导出的 TIA 的归一化均方误差来估计。此外,我们拟合了一个广义加性模型,该模型将基线生物标志物作为辅助数据纳入到单一活性测量中(模型 2)。采用均方误差(MAE)和预测 TIA 与参考 TIA 之间的均方误差来评估 STP 模型的留一交叉验证。

在第 3-5 天,所有评估的 STP 方法的表现都非常好,肾脏和肿瘤的 MAE 均小于 7%(患者间标准差<10%)。在其他 TPs 中,Madsen 方法和数据驱动模型 1 和 2 的表现也相当不错(肾脏的 MAE<17%,肿瘤的 MAE<32%),而 Hänscheid 方法的误差要高得多。添加基线生物标志物到预测模型的概念验证得到了证明,并在 Tp1 显示出了适度的增强,尤其是在估算肾脏 TIA 时(MAE±SD 从 15.6%±1.3%降至 11.8%±1.0%)。使用临床相关时间活性模拟对 500 名虚拟患者进行的评估显示出类似的性能。

Madsen 方法和所提出的数据驱动模型的性能对 TP 选择的敏感性低于 Hänscheid 方法。在最早的实用时间点,即时间窗 1,纳入基线生物标志物的模型优于仅依赖于单一活性测量的其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb66/10478823/799ddc633a4f/jnumed.122.265338absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验